
A Database Management System For Vision
Applications

John Oakley, Richard Shann, Darryl Davis, and Laurent Hugueville.

Multi-Media Research Group, Electrical Engineering,

Manchester University, Oxford Road, Manchester, Ml3 9PL, U.K.

Abstract

The Manchester Content Addressable Image Database is ageneric tool which has been

designed for image informatics and computer vision problems. The system stores pre-compuied

feature tokens, which are obtained by conventional processing of the input images, into a database

which is accessed by a specialised query language (M VQL [1]). The M VQL is based on the creation

and refinement of groups of features by computing attributes.

We illustrate the system with an application concerned with the detection and

classification of microfossil images. We use the MVQL to express a projective circular Hough

Transform for microfossil detection. We also address the problem of classifying detected structures

into six broad morphological groups. This is achieved using MVQL to define "structure" measures

from the distribution of curve tokens in a circular region around each microfossil.

1. Introduction.

The aim of this paper is to present a simple database management system (dbms),

which includes a data entry system, query interface and some graphical capability, which

has been specifically designed for vision research. The work is particularly motivated by

the need for content addressing of large volumes of image data. Over the last decade

vision research has moved away from analysis of single images in constrained

environments towards processing of bulk data in less constrained environments, for

example image sequences from surveillance cameras. However the most common

infrastructure is still a C (or C++) compiler together with (sometimes) a library of vision

algorithms. A good example of the usefulness of indexing tools in machine vision are the

various tree structures [3,4]. While 2-D arrays for data (reflecting 2-D spatial

organisauon) are common the more general techniques are less widespread because of the

need to re-code for each application. The problem of storage and retrieval of image data,

both image intensities and structures derived from images, is now of central importance

[5,6,7].

BMVC 1994 doi:10.5244/C.8.62

630

Forty years of research into databases and associated algorithms has yielded many

powerful tools. Of particular interest to vision workers are

• indexing, particularly spatial indexing

• storage management

• user interfaces

• query languages

• graphical databases.

In our view there are three main reasons for the poor take-up of database technology in

vision systems:

1. Restricted Accessibility

Commercial database packages require a significant investment in terms of

hardware/software cost and training requirements. The user must be something of an

expert to arrange the data, the relations and the indexing in a way that would give rapid

answers to the intended queries.

2. Flexibility

Using a commercial database package is often seen as using a hammer to

crack a nut. The benefits are only seen in near-market research.

3. Useability

Although the SQL (and its new cousin Object-SQL) provides a standardised

user interface, it is overly general, with a large syntax not well-matched to vision tasks.

We have addressed these issues by designing a low cost dbms with a simple query

language, the Manchester Visual Query Language (MVQL), and some graphics

capabilities. The motivation for this development was a requirement for content

addressing of image data. The idea is to use image processing to obtain sets of primitive

features (for example edges, curves, lextons) from a large set of images and to store these

as a kind of summary of the image content. Queries are then directed at the feature data in

order to retrieve images of interest. For this reason we refer to the dbms as a Content

Addressable Image Database (CAID) although is could be used in applications other than

image retrieval.

In section 2 we address three important aspects of the Manchester CAID: the query

language, spatial indexing method, and the implementation. In section 3 we give an

631

example of how the CAID may be applied to the problem of analysis of geological

samples through microfossil detection and classification. In this way we show that the

dbms, and in particular the query language is sufficiently expressive for real vision

applications.

2. The Manchester CAID

In content addressing problems the number of primitive features can be quite large and

have spatial, temporal and other aspects which will need to exploited to achieve a

reasonable access to the image content To form these groupings of primitives we have

developed a visual query language (the MVQL) based around a small set of set creation

and refinement operations. Starting from sets of primitives the main operations defined

are two pair operations (includes one, kD-PAIR which can exploit range restrictions), a

partitioning operation that divides a set into non-overlapping subsets (called bins); and a

selection operation.

2.1 The Basic MVOL Operators

The MVQL PAIR operator creates a set of objects which have properties computed

from their constituents (FIRST and SECOND). Likewise the parlioning operator BIN

forms groups with properties (eg MEAN, MAX, SUM, COUNT) computed over the

elements in the bin. To give some examples, we suppose our database to contain as

primitive features arcs detected in the images. Each arc is assigned position

coordinates (X,Y) (on the arc itself, rather than at the centre of curvature),

orientation (Angle) and radius of curvature (Radius).

A simple MVQL query for this database can be formed from the SELECT operation.

For example the query

largeArcs:= (Arc) SELECT PI"SQR(Radius)> 50

defines largeArcs as the set of Arcs forming part of circles with area greater than 50

square pixels.

To illustrate forming a set of pairs, consider the query

arc.l>airs:=l>AIR((Arc,largeArcs),{FIRSTlAngl£l=SECONDlAngleJ)) SELECT'distance< 10

where we use the macro

632

distance=SQRT(SQR(FIRST[X]-SECOND[X])+SQR(FIRST[YJ-SECOND[Y]))

as an aid to legibility.

The expression in curly braces is the pair-partition, which in this case has the effect

that the processing to lake place will first form blocks of Arcs of the same orientation and .

compute the distance only between elements in the blocks. The resultant set is a set of

pairs of closely spaced parallel arcs, and the number of such pairs is reported on the

console. An alternative version of the PAIR operator, the metric pair, exists to exploit

situations in which the data can be spatially indexed. This is described in section 4 of this

paper.

To illustrate the BIN operator consider the task of grouping Arcs that belong to the

same Image and fall in the same quadrant of that image. If our image was a 256x256 pixels

image then the expression X DIV 128 take on the values 0 and 1 in the left and right halves

of the image, and Y DIV 128 would lake on the values 0 and 1 in the top and bottom halves.

So a partition of the data by image and by these expressions would yield the grouping

required. As an example, the set

arcCtusters: = IilN((Arc), {image (XDIV25) (YDIV25)}) SELECTCOUNT> 10

groups Arcs by image and by position in a 10 by 10 grid of squares superimposed on

the image (again assuming a 256x256 image). The resultant set is a set of groups of arcs,

each group being associated with one square in one image, and each group having at least

ten members. Set reduction is accomplished by SELECT and RANKing operations. The

query language allows the operations to be nested and in this way quite complex

groupings can be specified fairly simply. The running lime for a query can be calculated

given the operations and the number of entities involved; it is linear in the number of

partitions and, for pairing, quadratic in the number in the largest partition.

2.2. Dynamic Spatial Indexing

The MVQL pair operator specifies a Cartesian product of two sets and hence the

number of objects formed increase as N2 if N is the number of elements in each set. For

example if we have a db of 1000 images with 4000 features in each image then the number

of possible pairs of features is 1.6xl()13. However we are often interested only in pairs of

features belonging to the same image. For example, if we were to form corner hypotheses

by grouping line segments then it would make litlle sense to group a line from one image

633

with another line from a different image. In this case we only have4xlO6 useful pairs. The

MVQL allows partitioning of data in arbitrary blocks of compatible features in order to

avoid a quadratic increase in cost with increasing N. Further gains in efficiency are

obtained by exploiting range constraints. For example, it may not be necessary to form

pairs of features which are well separated within an image. This can be achieved by

spatial indexing of the features within a coordinate space using, for example, a k-D tree

[3,4]. We have implemented a dynamic version of this strategy, where the query defines

the coordinate space required, and gives the range constraints to be applied to the pairs. If

N denotes the number of features in the partition then (to take the case of pairing a set with

itself) searching a kD-tree of N items for matches with another set of N items take

O(NlogN) time. Since the creation of the k-D tree also takes O(NlogN) time the

asymptotic performance is not affected making the indexing dynamic.

The MVQL syntax uses lists of expressions for the coordinates of the FIRST and

SECOND objects and of the ranges, for example

arcPairs := kD-PAIR((Arc,largeArcs),{FIRST[Angle]=SECONDlAngle]} ,{FIRST(X Y),
SECOND(X Y), RANGES(distx disty)})

This constrains the X coordinates of the paired arcs to differ by less than distx, and the

Y coordinates by disty.

As an indication of the speed up this gives consider pairing 8000 arcs with themselves.

In 2-D without spatial indexing the timing for finding 500 matches is 17.1 limes slower

than with the indexing. In 4-D the benefit for a similar search is 22.5 times speed-up.

Using uniformly distributed random values we found that the time to retrieve 500 matches

from the 8000 pairs was 4.5+0.4 k log k seconds for dimensions k=l ... 10 on an SUN-4

workstation. The dependence on k log k arises from the need to traverse an increasingly

sparse tree and copy k values from it.

2.3 Comparison with SOL

The MVQL PAIR BIN and SELECT operations correspond approximately to the join,

project and select operations in a relational database. In SQL terms the equivalencies arc

broadly

SQL MVQL
SELECT FROM A,Ii... WHERE C AND D PAIR((A,B),{C}) SELECTD
SELECT FROM A,«... WHERE C AND D AND E kD-PAlR((A,li),{C) {D})

634

SELECTE
SELECT FROM A, GROUP BY B HA VING C BIN(A, {B}) SELECT C

The SQL is very much more general, a statement of what should be done than of

'how'. Nevertheless these three simple operators provide a powerful formalism for

forward productions. The simplicity of the MVQL query structure has three advantages

1) enables efficient processing of large amounts of data and

2) queries can be easily costed. That is, it is easy to predict for a given MVQL

specification the number of operations implied and hence the computational cost.

3) MVQL can be interpreted by a relatively simple query processor.

2.4 Implementation of the dbms

Subject Relation Object Tagfields (32 bits)

Image
Arc

HasWidtl
HasX

512

42
I I I I I I I I I I I I I I

I I I I I I I I I I I I I I

i i i i i i i i i i i I i •

Figure 1. Triple store schema

Our implementation is based on a triple store: each data item is entered as a the target

of some relation to an entity in the form (subject,relation,object), sec figure 1. A general

scheme that inserted the entities created by the user's queries (eg sets of features) into the

triple store would require a fairly complex management system. (Typically the user needs

to be kept informed of the space he is using, and needs to be able to remove unwanted

triples). Instead we have a fixed number of lag fields in the triple store which can mark

triples. User defined sets are then represented by tags at points in the triple store relevant to

the entities grouped, rather than new triples, along with a representation of the processing

needed to re-instantiate the sets. The time and space requirements for rc-instantialion of a

set are reduced compared with the initial creation lime because only tagged triples arc

processed, and because only those attributes actually needed are instantiated.

To provide some modularity in the sysiem we have split the implementation into three

broad parts. Fig 2 shows a block diagram of the system. At the lowest level we have

C-routines to issue identifiers for nodes and relations, to convert Icxicals to identifiers and

vice versa, and to insert triples in the triple store. These routines arc based on ihc Sierra 1

software from Essex University [8]. At the next level, linked by a procedural interface is a

635

C-program that takes a language (the Table Processing Language TPL) input. This

language is specified as a Yacc grammar. The TPL creates temporary tables holding data

extracted from the triple store. Various operations on the tables can be specified, including

sorting on columns and triples tagged as specified. At this level the inheritance of

attributes is implemented (single inheritance), and simple display routines provided. At

the highest level is a Lisp program that reads the user's MVQL (again a Yacc specified

grammar) and generates a series of TPL commands.

1 1
Mvql

Interpreter

Lisp
C

Lex
Yacc

TPL 1 1

Tpl
Interpreter

C
Lex
Yacc

-O.TV'

R

*u-F-\
R A

1
Sierra
Access

Routines

C

^

Triples
•4

Lexi-
cal

Store

Tri-
ple

S.tnrc

Figure 2. Modules in the CAID

For example the fragment* + R cos(theta) in an MVQL statement would cause a table

with columns for the xji, and thela data to be created and a sequence of TPL commands to

take the cosine of the data in theta column putting the result in a scratch-pad column,

multiply this column by the R column etc. The result would be a column of values for the

resultant attribute. It is the responsibility of the Lisp program to keep track of the meaning

of the tags and tables.

3. Example Application

Microfossil images are used in the dating of geological samples. We can use the CAID

system to to detect and classify microfossils, and so go some way to providing an

automated geological sample dating system.

3.1. Microfossil Detection

The primitive features chosen were arcs, characterised by a position orientation and

curvature; for each of 100 images 400 arcs were detected and stored. The images were

annotated with areas of interest (AOI) by a geologist, each useful microfossil being

assigned an AOI with associated position and radius.

636

Figure 4. Image showing microfossils.

As the fossils tend to be associated with the arcs detected a very simple detector would

group the arcs by image and by position on some coarse grid within the image. The arcs

are thus made to "vote" for grid squares. We accept grid squares with many votes as

possible detections. By pairing the possible detections with AOIs we can find the

637

numbers of those that lie on the fossils and those that lie off the fossils. By varying the

threshold on the number of arcs voting for a detection we can form performance curves for

the false positive rate against the true positive rate. However the performance of this

scheme proved to be poor. This was partly because many of the microfossils have roughly

circular walls with strong contrast but rather little high contrast texture in the centre. The

circular Hough Transform is a better detector for most microfossils

We can implement a projected circular Hough transform by making arcs vote for grid

squares cut by a line segment normal to the arc covering the expected range of fossil radii.

For a line segment of length minrad to maxrad we can use

votes:= I'AIR(((Array),(Arc)),{TRUE}) AT SECOND I Image]
SELECTABS({gndX-arcX) *SIN(arcAngle) - (gridY-arcY) *COS(arcAngle)) <

binsize
AND

AliS(ANGDIFF(ATAN2(gridY-arcYgridX-arcX),arcAnglc)) < PI/3
ANDSQR(gridX-arcX)+SQR(gridY-arcY) < SQR(maxrad)
AND SQR(gridX-arcX) +SQR(gridY-arcY) > SQR(minrad)

Here Array is a fixed set of Hough cells inserted in the database. The grid and arc

position references used here arc the macros

gridX=FIRST[X]
gridY=FIRSr(Y]
arcX=SECOND[TRUNC((X DIV 51) *51.2) + 25]
arcY=SECOND[TRUNC((YDIV51)*51.2

The set votes associates each grid square in the array with the strong arcs in that square,

regardless of image. We can group the votes by image using the bin operator, discarding

low occupancy grid squares:

occupancyThresh = 15

hough:= BINfvoles, { Image FIRST[liase]}) AT Image SELECT COUNT > occupancyThresh

To find the grid squares that are close to AOIs we pair them together. Again we use

macros for clarity:

hx= SECOND[COMMONIgridXJ]

hy= SECOND [COMMON[gridY]]

aoiX= F1RST[X]

aoiY= FIRST[YJ

aoiRad= FIRST [Radius]

in terms of these we can write the set of all detections as:

638

detects— I'A1R(((AOI).hough), {FIRST[lmageJ=SECOND[Image])) ATFIRST[lmage]
SELECT

SQR(hx-aoiX) +SQR(hy-aoiY) <SQR(aoiRad)

The cardinality of this set is the total number of grid squares that lie close to fossils, so

we can find the number of fossils detected from the cardinality of the following sct:-

truePositives: = (AOI) SUPPORTING delects

Fig 5 shows the detection of two fossils. Note that the graphics were generated by the

graphical output facility of MVQL. The performance of this type of detector is discussed

in [2J.

Figure 5. Image showing detection of 2 microfossils using the protective circular

hough transform.

639

4. Conclusion

We have developed an application-independent content addressable image database,

that addresses image informatics and computer vision problems. The query language in

this dbms allows the user to handle large data volumes with predictable performance.

Application studies have shown that it facilitates machine vision research by providing a

uniform interface to image data with tools to search and group the data efficiently.

5. Acknowledgements

This work was done under a grant from the UK SERC. We acknowledge the IFS group

at the Department of Computer Science of Essex University for the Sierra Software.

Geological expertise and microfossil image annotation provided by Dr F.M. While of The

Department of Geology, with funding provided by the University of Manchester.

6. References

1. J.P. Oakley, D.N. Davis & R.T. Shann, "The Manchester Visual Query Language",
SPIE Proceedings, Vol. 1908, Storage and Retrieval for Image & Video Databases, pp.
104-114, 1993.

2. R.T. Shann, J.P. Oakley, D.N. Davis and F.M. While. Detection of circular arcs for
content-based retrieval from an image database. I.E.E. Vision, Image & Signal
Processing. Vol. 141, pp. 49-55,1994.

3. Bentley, J.L. [1975J, "Multidimensional binary search trees used for associative
searching," Commun. Ass. Comput. Mach., vol. 19, pp.509-517, Sept. 1975.

4. Bentlcy, J.L. [1979], "Multidimensional binary search irees in Database applications,"
IEEE Trans. Soft. Eng., vol. SE-5, NO. 4, July 1979.

5. J.N.D. Hiblcr et C.H. Leung, K.L. Mannock and M.K. Mwara, A system for content
based storage and retrieval in an image database , SPIE, Vol. 1662 Image storage, and

retrieval systems, pp 80-92, 1992.

6. W. Niblack R. Barber W. Equitz M. Flickner E Glasman D Peikovic P Yankcr C
Faloutsos G Taubin, The QBIC Project: Querying Images by Content Using Color,
Texture and Shape SPIE 1908p!73-188 (1993)

1. M. H. O'Docherty C.N.Daskalakis, P.J.Crowthcr, C.A.Goblc. M.A.Ireton, J.P.Oakley
and C S.Xydeas, The design and implementation of a multimedia information system
with automatic content retrieval , Information Services & Use, vol 11, pp 345-385
Elscvicr, 1991

8. S.H. Lavington and J. Wang, "The external procedural interface (EPI) for the IFS/2,"
Dcpi. Computer Science, University Of Essex, Report CSM-164, June 1991.

