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Abstract

A number of recent papers have demonstrated that camera "self-
calibration" can be accomplished purely from image measurements,
without requiring special calibration objects or known camera mo-
tion. We describe a method, based on self-calibration, for obtaining
(scaled) Euclidean structure from multiple uncalibrated perspective
images using only point matches between views.

The method is in two stages. First, using an uncalibrated cam-
era, structure is recovered up to an affine ambiguity from two views.
Second, from one or more further views of this affine structure the
camera intrinsic parameters are determined, and the structure ambi-
guity reduced to scaled Euclidean. The technique is independent of
how the affine structure is obtained. We analyse its limitations and
degeneracies.

Results are given for images of real scenes. An application is
described for active vision, where a Euclidean reconstruction is ob-
tained during normal operation with an initially uncalibrated cam-
era. Finally, it is demonstrated that Euclidean reconstruction can be
obtained from a single perspective image of a repeated structure.

1 Introduction
If cameras are uncalibrated then, in the absence of other information, struc-
ture can only be recovered up to a projective ambiguity from an image
pair or sequence [3, 9]. However, for special motions or unchanging intrin-
sic camera parameters, the projective ambiguity can be reduced to affine
or scaled Euclidean (similarity). The latter approach - constant intrin-
sic parameters - was pioneered by Faugeras et al. [5] and termed "self-
calibration". Visual tasks can be accomplished using only projective or
affine structure. Examples include recognition [18] (projective) and path
planning [2], grasping [10] and fixation point tracking [17] (all affine). How-
ever, there are clearly situations where having, at least approximate, cal-
ibration is useful. For example, within an active vision system, rotatipn
about the optical centre and control of fixation angles requires approxi-
mate knowledge of the intrinsic parameters.

BMVC 1994 doi:10.5244/C.8.50



510

Self-calibration is important for a number of reasons. First, it removes
the onerous task of calibrating cameras using special calibration blocks [20].
Second, calibration can be updated if, for example, focal length is altered
during an image sequence. Third, if an incorrect intrinsic calibration is
adopted this could conflict with veridical intrinsic parameters, which are
implicit in the data during motion, and lead to inconsistencies or numerical
instabilities.

The original self-calibration method of Faugeras, Luong and Maybank [5.
12, 14] required solving a system of polynomial equations obtained from
three views. Hartley [8] developed a self calibration method for pure ro-
tations with a linear solution for the intrinsic parameters. More recently
stratified approaches have been developed [7, 13] for general viewer mo-
tions, where calibration is achieved in two stages. First, affine structure
is recovered. Second, intrinsic parameters are determined based on affine
relations, both stages generally involve linear computations. The stratified
approach is adopted here, and described in detail in section 2.

All self-calibration methods require rotation of the image plane in order
to constrain the intrinsic parameters. In essence, self-calibration is possible
because the camera always carries its own calibration object - namely the
image plane. The image plane acts as a gauge object defining angles in a
projective space.

2 Theory
2.1 Camera Model and Notation
Here we define the camera matrix and the five intrinsic parameters. These
results are based mainly on [3, 6, 16]. Perspective projection from 3D pro-
jective space V3 to the image plane V2 is modelled by a 3 x4 matrix P where
x = PX, x = (x,y, 1)T and X = (X, Y, Z, 1)T are homogeneous vectors.
If (X, Y, Z)T is measured in a Euclidean coordinate system, then P can be
decomposed as P = CR[ I | — t̂ g] by QR decomposition1 of the 3 x 3 matrix
CR, where I is the 3 x 3 identity, and {R, t^;} is the Euclidean (rotation
and translation) transformation between the world and camera coordinate
frames, and C the upper triangular matrix containing the intrinsic parame-
ters of the camera. C is the transformation between the camera coordinates
of a ray and image (measured) homogeneous coordinates.

au k u0

C = 0 av vQ (1)
0 0 1

1 Any real matrix can be decomposed into the product of a triangular and orthogonal
matrix.
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where au and av are the focal length measured in pixels along the x and
y directions respectively, (UO,VQ) is the principal point, and k = aucot9 is
the skew, with 9 the angle between image axes.

2.2 Euclidean Reconstruction
Camera calibration, and hence Euclidean reconstruction, is achieved in
three stages using point matches between a number of images of a static
scene. More details can be found in [1].

1. Computing affine structure: An affine reconstruction is where point
coordinates {X4} are known up to an affine transformation of their Eu-
clidean values XE = (X, Y, Z, 1)T, i.e.

XA = E A t
0 T

.4 X E

where A is an invertible 3x3 matrix, and t.4 a 3-vector. {A, t^} are unknown
but the same for all points.

Affine structure is recovered from two uncalibrated images with pure
(though unknown) translation between the views (i.e. no rotation), and
unchanging intrinsic parameters (again unknown), based on a result of
Moons et al. [15]. The projective camera matrices for the two views are
written xi = PiX and X2 = P2X, for the first and second images respec-
tively. It can be shown that for this motion the matrices can be chosen
as Px = [l|0], P2 = [I| — e] where e is the image epipole. Reconstruction
proceeds in the normal fashion by backprojecting corresponding points in
each view, and determining the 3D point as the ray's intersection.

Implementation details For this motion the fundamental matrix is
skew symmetric with only three degrees of freedom, and epipoles have the
same position in both images. F is computed from point correspondences
between images, and e computed from Fe = 0. The world point, XA , is
computed by intersecting backprojected rays: from Xj, X.A = A1(x1

r,l)T;
and from X2, X'4 = A2(xJ, 1)T + e; where At- is an unknown scaling along
each ray. Because of image localisation error the rays will be skew and
a minimisation criteria is required. We minimise image error (as opposed
to a 3D error) by orthogonally projecting points Xi,X2 onto their "epipo-
lar line", generating corrected points x,. Note, for this special motion, an
"epipolar line" for two corresponding points can be chosen as the line con-
taining e which minimises the perpendicular distance to the two points.
The 3D position is the intersection of the rays corresponding to x,-.

2. Computing camera calibration: This method is an extension of
that of Luong and Vieville [13] and Hartley [7]. P, can be partitioned ras
P; = [Mt-| — M,-t,-]. It can be shown [13] that in an affine coordinate frame, the
infinite homography, H^, is given by HQO = MjM"1. The infinite homography
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is the point transformation matrix for vanishing points, i.e. VJ = H^v,,
where v,- and Vj are corresponding vanishing points in the i and j images
respectively. Under the Hco transformation Kj = HQOKJ-HJ, where K,- = C,-Ĉ ".
K, is the image in view i of the dual (i.e. the inverse) of the absolute conic.
This equation provides a linear method for obtaining K. Camera intrinsic
parameters are fixed between views, so K,- = Kj = K and

K = HooKH^ (2)

Once K is determined (up to scale), C can be obtained simply by a Choleski
decomposition2 of K = CCT.

In the following we consider two methods for obtaining K. Both depend
on taking further views of the structure where the camera motion includes
a rotation. If there is no rotation, equation (2) reduces to K = K and there
is no constraint on K.

Single rotation: Equation (2) can be written in the form Hk = 0, where
k is the six distinct elements of the symmetric matrix K written as a vector,
and 7i is a 6 x 6 matrix. It can be shown [13], that H is rank four, so there
is a one parameter family of homogeneous solutions for k. Following [13],
this ambiguity can be removed by assuming k — 0 [k is the skew parameter
in equation (1)) i.e. that image axes are perpendicular. This is a very
good approximation in practice. This constraint results in a quadratic,
K12K33 = K23K13, giving two solutions for K. Now K can be decomposed
into C by Choleski factorisation. Often one of the solutions for K is not
positive definite and so can be eliminated.

Two or more rotations: Suppose there are two or more rotations about
different axes. Each new view generates an equation, Hk = 0, where H is
rank four. Combining these equations for n rotations generates a system,
with H a 6n X 6 matrix from n H^ matrices, which will be rank five in
general. Consequently a unique K is obtained (up to scale). In practice
k is determined by minimising E = ||"Hk||2/||k||2 using SVD to find the
eigenvector corresponding to the minimum eigenvalue.

3. Computing Euclidean Structure: Once the camera intrinsic param-
eters are known, scaled Euclidean structure, X s , can be computed from the
affine structure. It can be shown that X 5 — C~XX'4. If measurements on
the actual Euclidean structure are X £ , then the remaining ambiguity is
that X s is related to X'5' by a rotation, translation, and isotropic scaling.

2.3 Degeneracies
If camera rotation is only about one of the camera axes, then some of
the intrinsic parameters are unconstrained by equation (2) and cannot be

2 Any symmetric positive definite matrix A can be decomposed into a unique upper
triangular matrix U such that A = UUT.
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determined. This can be analysed by examining the infinite homography
Hco. It can be shown [13] that H,̂  = CRC"1 where R is the rotation between
images. When k = 0, a rotation of 6 about the camera X axis gives

1
0
0

u0 sin 9/av

cos 9 + VQ sin 9/av

sm9/av

u0{cos9-l)
VQ(COS9 — 1) — I

cos 9 —

- uoyosin(
o sin 9/av -
VQ sin 9/av

3 /

av sin 9

There are no au terms in HQO and consequently no possible constraint on au

in equation (2) (the coefficient of au is zero). Consequently, au is uncon-
strained. Similarly, with a rotation about the Y axis, av is unconstrained.
For rotations about the Z axis (the optical axis), au and av only appear in
Hoo as the ratio (av/au), so their independent values cannot be determined.

Near degenerate situations occur if the magnitude of rotation about
one axis is small. In this case the associated intrinsic parameter is poorly
constrained.

3 Experimental results and assessment
Accuracy is assessed in two ways: first, by comparing the intrinsic param-
eters determined using self-calibration with "veridical" values obtained by
conventional calibration [4] using a calibration object with known 3D struc-
ture; second, by comparing the recovered 3D Euclidean structure with that
of the accurately known calibration object. The calibration object used is
shown in figure 1.

3.1 Conventional Camera Calibration
The veridical intrinsic parameters are determined from a single perspective
image of a calibration object (an orthogonal pair of Tsai grids, see figure la),
with accurately known 3D Euclidean structure. The 3x4 projection matrix,
P, is determined from the correspondence between image and 3D corners. C
is extracted from P using QR decomposition as in section 2.1. Image corner
positions are determined to sub-pixel accuracy by straight line intersections.
The matrix P is computed by minimising the distance between measured
and predicted image positions using a Levenberg-Marquardt scheme. Re-
sults are given in table 1 for averages computed over all available images.
In general au, av, and the aspect ratio av/au are stable over views, vary-
ing by less than 0.5%. In contrast the principal point (uo, ̂ o) varies over a
20 x 20 pixel region in a 512 X 512 image. This more substantial variation
of the principal point commonly occurs in calibration [20].

3.2 Self Calibration
In the following, a number of examples are compared differing in the num-
ber of views and rotation between views. In all cases affine structure is
recovered from two views related by a translation. Corner detection and
matching are automatic. The results for the intrinsic parameters are given
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in table 1. The tolerances given are the standard deviation over several
sets of images. The number of sets used is also shown in the table.

3 Images There is a pure translation between the first two images, and a
translation and rotation for the third. The translation between the second
and third images is necessary only to ensure the grid is at the image centre,
and hence reduce radial image distortion. H^ is determined between views
two and three (it is identical to that obtained from views one and three).
As described in section 2.2, the additional constraint that k = 0 is required
in this single rotation case. Two sets of results are given. For the first (5°),
the rotation magnitude is 5° about both the camera X and Y axes. For
the second (10°), at least one of the rotations has magnitude larger than
5°: two images have rotations, (R(X), R(Y)), of (5°, 10°), two have (5°, 15°),
one each of (10°, 10°) and (10°, 15°). The rotation is limited to 15° so that
both sides of the calibration grid are still in view in the image. The larger
rotations give more stable values, as discussed in section 2.3.

4 Images A second rotated view is added to the sequence, and the two
HQO matrices, found from the mapping from the second to the third, and
second to the fourth image, are used simultaneously to find K. This second
HQO generally changes the rank of H from four to five. The constraint k = 0
is not required, and the calculated value for k given. Note, H^ between
the third and fourth images adds no additional information. These images
are selected from the (5°) and (10°) sets above, such that rotations about
corresponding camera axes (e.g. the X axis) in the third and fourth views
differ in magnitude.

6 Images Four rotated views are used to give a 24 x 6 matrix H of
rank five, with the H<x, mapping from the second image to each of the
four rotated images. These give the most stable results, with intrinsic
parameters approaching the veridical values.

Degenerate A three image sequence is used, but the rotation is here
limited to either the camera X or Y axis. As shown in section 2.3 this
results in au or av being unconstrained.

The stability of the intrinsic parameters increases with the number of views
and the size of the rotations. au, av and au/av have an error of between 2%
and 6%. Again (uo, Vo) varies over a region in the centre of the image, the
size of the region varying from 20 x 30 to 5 X 5, decreasing with increasing
number of views and rotation magnitude. In the six image case, the skew
parameter k = 21.8 is significantly larger than the veridical value of k —
1.5 ± 0.4, but this corresponds to only 2° off perpendicular.
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Method
(No. of Image sets)

Known 3D Grid(lO)

3 Images-5°(9)

3 Images-10°(6)

4 Images (13)

6 Images (35)

Degenerate-X (6)

Degenerate-Y (2)

au

(pixels)
646.0
±3.5
625.2
±41.1
684.4
±26.7
661.0
±17.0
645.6
±13.1

_
687.2
±34.9

a,
(pixels)
968.7
±4.7
954.5
±35.51034.0
±24.9
1018.0
±22.2
1001.8
±16.9
1064.0
±32.5

-

1.4996
±0.0016

1.53
±0.11
1.513

±0.081
1.522

±0.028
1.552

±0.021

-

-

(pixels)
246.5
±9.2
242.8
±20.1
261.0
±4.0
258.0
±7.7260.0
±4.6
245.0
±4.2
260.2
±27.2

vo
(pixels)
244.3
±11.4
225.6
±29.4
234.2
±32.0
239.7
±11.6
236.9
±6.6
208
±333.8

±13.7

k
(pixels)

1.5
±0.4

0.0

0.0

1.2
±36.6
21.8

±14.4

0.0

0.0

Table 1: Mean and standard deviation of the intrinsic parameters deter-
mined from a varying number of views and rotations. See text for details.

3.3 Euclidean Reconstruction
Scaled Euclidean structure is recovered from the affine structure and camera
calibration using the method of section 2.2. The accuracy of the reconstruc-
tion indicates how errors in camera calibration propagate through to errors
in structure. For example, an error in au could have a more detrimental
effect than one in UQ. The accuracy of the scaled Euclidean reconstruction
is assessed by comparing similarity invariants (angles, distance ratios) with
those calculated from the known structure of the calibration object. Results
are given in table 2 and figure 1 for the same image sets used to evaluate
the intrinsic parameters. Three similarity invariants are measured, the first
two measure local structure, and the third global.

Figure 1: (a) A typical image of the calibration object used to assess ac-
curacy, (b) Affine structure recovered from two perspective images of the
calibration object, note the in plane skew. The angle between the two
planes is 179.7° compared to 90.0° on the object, (c) Scaled Euclidean
structure obtained from three perspective images, after determining in-
trinsic parameters. The planes are now orthogonal to high accuracy, see
table 2.
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Method

3 Images-5°
3 Images-10°
4 Images
6 Images

Distance Error

4.5%
3.9%
3.9%
3.7%

Pattern Error
(degrees)

2.51
1.66
1.12
1.00

Plane Angle
(degrees)

91.03 ±3.80
91.52 ±4.20
89.33 ± 2.21
90.35 ±1.07

Table 2: Similarity invariants measured on recovered (scaled) Euclidean
structure: The Distance Error is the ratio of standard deviation to mean
over 196 measurements of distance between adjacent points; The Pattern
error is the standard deviation of angles computed for all corners of grid
squares; The Plane angle is the angle between the two planes of the
calibration object, determined by orthogonal regression to all points on
each plane of the grid. For ideal data the distance and pattern error would
be zero, and plane angle 90°.

4 Applications
4.1 Active vision
For a camera mounted on a robot arm or AGV, it is trivial to perform
pure translational motion. Consequently, the method of Moons et al. [15]
adopted here for generating affine structure, is particularly appropriate to
active vision tasks. Accuracy can be improved by servoing on the epipole
position. The following results are for an implemented system [2], with
automatic corner detection, matching and elimination of outliers. See [19]
for details of the outlier rejection method. During the motion the camera
is calibrated on the fly and similarity structure recovered. Note, corners
are detected here using a corner detector, thus localisation is less accurate
than the line intersection method used for the calibration grid.

Figure 2 shows two images from a sequence of 20 where the camera
rotates overall by 20° about its X and Y axes. The calculated intrin-
sic parameters are {au = 673.1,av — 1005.4,av/au = 1.494,(UO,VQ) =
(249.3,282.9)}, compare with values in table 1. The recovered structure is
shown in figure 2. The angles between the roof, front and side of the house
were calculated, by orthogonal regression to points on each plane, to be
53.9°, 94.7°, 87.5° compared to measured values of 51.4°, 90.0°, 90.0°.

4.2 Repeated structure
Structures that repeat in a single image of a scene are equivalent to multiple
views of a single instance of the structure [11]. Thus, for example, a view of
two identical objects related by a translation is equivalent to a stereo pair
of images of one object, with the cameras related by a pure translation.
If in a single image there are three identical objects, of which two are
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Figure 2: (a) and (b) Images from the sequence used for similarity recon-
struction, (c) The reconstructed house projected from a different viewpoint,
with lines added for clarity. The reconstruction is for 100 points matched
between the first two images, of which 30 (bold) were tracked through all
20 images and used to compute calibration.

! • !

\ \ \

- - • — "

\

\

Figure 3: (a) A single image containing repeated structure, (b) and (c)
Two views of the recovered scaled Euclidean structure.

related by a simple translation, then the camera can be calibrated and
structure measured up to a similarity ambiguity. Figure 3 shows such an
image and the reconstruction. The angles between the planar sides of the
reconstruction, found by orthogonal regression to points on each plane, are
84°, 81°, 81°, compared to an actual value of 90°.

5 Discussion
We have demonstrated that numerically stable camera self-calibration can
be achieved from images of real scenes. The accuracy approaches that of
conventional calibration methods based on calibration objects. There are
a number of interesting research questions to be addressed:

1. Are there other methods of achieving afnne structure without scene
knowledge (i.e. knowing affine quantities such as vanishing points or
volume ratios) from two or more views.

2. Are perspective effects important? Will calibration accuracy degrade
if the imaging geometry is near afRne? (object depth small compared
to the distance from the camera, and a small field of view).
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