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We have previously described how to model shape variability by means of point
distribution models (PDMs) in which there is a linear relationship between a set of
shape parameters and the positions of points on the shape. This linear formulation
can fail for shapes which articulate or bend: we show examples of such failure for both
real and synthetic classes of shape. A new, more general formulation for PDMs, based
on polynomial regression, is presented. The resulting Polynomial Regression PDMs
(PRPDM:s) perform well on the data for which the linear method failed.

1. Introduction

Deformable template models have proved an effective basis for interpreting images of
objects whose appearance can vary. Various approaches have been described [ 1-6] with
varying degrees of generality. One of the most important issues is that of limiting
shape variability to that which is consistent with the class of objects 10 be modelled.
[2,4,7).

‘We have previously described how the shape variability for a class of objects can be
represented by Point Distribution Models (PDMs) [8]. The objects are defined by
landmark points which are placed in the same way on each of a set of examples. A
statistical analysis yields estimates for the mean shape and the main ‘modes of
variation’ for the class. Each mode changes the shape by moving the landmarks along
straight lines passing through their mean positions. New shapes, consistent with those
found in the training set, are created by modifying the mean shape with weighted sums
of the modes.

These linear models have proved successful in capturing the variability present in
both natural and man-made objects [7-10]; there are, however, situations where they
fail. For example, flexible or articulated objects which can bend through large angles
are poorly modelled. The result of such failure is lack of specificity — the resulting
models can adopt implausible shapes, very different from those in the training set.

In this paper we describe a method for extending PDMs to deal with non-linear
shape variability, by finding modes of variation in which the landmark points move
along polynomial paths. We first illustrate how linear PDMs can fail, using examples
based on both synthetic and real data. We describe the formulation of Polynomial
Regression PDMs (PRPDM:s) and show how they can be trained from sets of examples.
We also show how a new example can be reconstructed given a set of shape parameters.
The method is applied to the two datasets for which the linear method was
unsuccessful and is shown to perform well.

2. Linear Point Distribution Models

A shape may be conveniently represented by the positions x of a set of n landmark
points; X = (x;,¥; ...-X,,¥, ) - Assume that we have aset of N examples from a given
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class of shape. We place landmarks at corresponding positions on each example i [11]
(i = (61 Vits o s XimVin)')- Alinear PDM is constructed as follows. The shapes
are aligned by scaling, translating and rotating each example so that they overlap as
much as possible (see[8]). Let X be themean of the N aligned examples. Let S be the
covariance matrix of the set of examples about the mean:

i .
S = 53 -0 -9

i=1

The ¢ eigenvectors of S corresponding to the largest ¢ eigenvalues give a set of basis
vectors for a flexible model. A new example is generated by adding to the mean shape a
superposition of these basis vectors, weighted by a set of ¢ shape parameters
(b1, by, ... b)) . We describe the basis vectors as the modes of variation of the shape.

3. Failure of the Linear Model

In many cases a linear PDM can provide a good model of a class of shapes [9,10]. This
will not, however, always be the case. An obvious example is where one subpart of a
modelled object can rotate about another. The linear paths traced out by the landmark
points, as each parameter b; is varied, provide a poor approximation to the circulararcs
which are required to model the shape variation accurately. The problem manifests
itself as a dependency between the shape parameters b, . The modes of variation are of
course guaranteed to be linearly independent, implying that a ‘legal’ shape will result
when the parameters are chosen independently. If, however, there are non-linear
dependencies between the landmark ordinates x , the shape parameters can no longer
be chosen independently. We illustrate this problem with two examples.

3.1 Tadpoles
The tadpoles shown in Fig. 1 are examples from a synthetic class of shapes. A flexible
spine of 10 segments is generated, with the angle between successive segments varying
by a random amount between —0.12rad and +0.12rad about a mean value A , which is
set at random for each tadpole to between -0.4rad and 0.4rad. The higher the value of
| 4| forthe tadpole, the greater its tendency to curl up systematically in one direction.
The head is represented by six landmark points at one end of the spine. The tail is
fleshed out with two landmark points either side of the spine nodes, and one landmark
point at the tip. The size of the head and the width of the tail are kept constant.
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Figure 1. Examples of tadpole training data
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Training a linear PDM on 100 tadpoles, we find that three modes of variation are
needed to explain 95% of the variance in the training data. Fig. 2 demonstrates these
modes, showing how the shape changes when each shape parameter is varied by two
standard deviations either side of the mean shape. The first mode primarily describes
bending, but this is accompanied by lengthening of the tail and an increase in the size of
the head. These effects do not occur in the training examples; they are a consequence
of using a linear model, in which the landmark points must move in straight lines for
each mode of variation. The third mode ‘compensates’ for the unwanted variation
introduced by the first. An alternative way of visualising this problem is provided by Fig.
3, which shows scattergrams of the second and third shape parameters plotted against
the first. A weak non-linear relationship exists between b, and b, , with b, tending to
be higher when b, isclose tozero; thereisa very clear non-linear relationship between
b; and b, , with b; tending tobe higher when b, isclose to zero. Thus the assumption
of independence of the shape parameters does not hold. This means that a
combination of shape parameters can be chosen, each within its normal range, such
that a shape very different from any in the training set is generated.
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Figure 2. Three modes of variation (mean +— 2 standard deviations) of the Linear PDM, trained
on the tadpole data. Note the changing size of the head, and the change in tail length which

accompanies bending.
(a)
l‘ -... - %
o e .q. e P ] J
n. .nﬂc .‘- la. - e ..’-\r‘ﬁ?:g
by |} :-.,:ef_l‘ R] by | )
i il . .
L > e . . .
- ___I _
by by

Figure 3. Tadpole data, Linear PDM: scattergrams: (a) b, against b, (b) b, against b £
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3.2 Chromosomes

The chromosome data were obtained from microscope images of stained human
chromosomes in the late prophase stage of mitosis. Each chromosome is represented
by 92 landmark points, placed at opposite ends of 45 equally spaced chords and at the
two end points. The procedure for marking the landmark points has been described by
Charters [11]. Fig. 4 shows examples from the training set. The up-down and left-right
orientation of each chromosome is arbitrary; for this reason we include in the training
set a 180° rotation and two reflections of each image, as well as the original. From 353
distinct images, we thus have 1412 training examples.
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Figure 4. Examples of chromosome training data. Each distinct image appears four times in
the training set, owing to reflections and rotation.
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Figi:ve 5. First four modes (mean +— 2 standard deviations) of linear PDM, trained on the
chromosome data. Note the change in length which accompanies bending..

For the linear PDM, eight modes of variation are needed to explain 95% of the
variance in the data. The first four modes are illustrated in Figure 5. We see that, as
with the linear tadpole PDM, the bending of the first mode is accompanied by an
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increase in length, whereas the length does not change in this way for the scaled
training examples. Fig. 6 is a scattergram of the first two shape parameters (b, against
b, ) for the training data. There is a very clear non-linear relationship between b, and
b, ,with b, tending tobe lower when b, isclose to zero: thus the shape parameters are
not independent. Again, implausible shapes can be generated by choosing apparently
legal combinations of parameters.

Figure 6. Chromosome data, linear PDM: scattergram of b, against b 1-

4. Polynomial Regression Models

We propose a modified class of models which we call Polynomial Regression PDMs
(PRPDMs). The basic idea is to allow landmark points to follow polynomial rather than
linear paths as each shape parameter is varied, allowing more complex behaviour, such
as bending, to be modelled directly. Our approach is motivated by noting that the
eigen-analysis used to extract the modes of variation for a standard PDM can be
conceptualised (however implemented) as a sequential process:

(i) For each training example i initialise a vector of residuals r; to the deviation of
that example from the mean: r; = x; - X.

(if) Fitastraightline u tothesetof residuals { r; ... ry },soasto minimise the sum of
squares of distances from the straight line.

(iif) Compute the residual deviation from the line u (i.e remove the component of the
r; along u ) to give a new set of residuals.

¥ = - (ry'uu
Steps (ii) and (iii) are repeated to find subsequent modes. We normally fit a sufficient
number of modes so that the remaining residuals are small enough to be attributed to
random noise - typically when the unexplained variance is between 5% and 1% of the
original variance.

We note that, once a linear mode has been extracted, it may be possible to further
reduce the residuals r; without introducing additional modes of variation by fitting a
polynomial along the direction of the mode. For example in Fig. 3, b, and b; could be
modelled by polynomials in b, . This leads to the idea of a polynomial regression
model. The details of the procedure for building a PRPDM are as follows:
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(i) Compute the initial variance of the data, of . Then, for each training example,
initialise a vector of residuals r; to the vector of landmark positions x; . (i.e. let r;
= X; .)

(ii) Let the current residual vector for each example i be denoted by r;, let the mean
value of the r; be denoted by F, and let the covariance matrix of the set of current
residual vectors { ry, 5, ... ry } about the mean be denoted by S :

N
1
S == -0r-0
N i=1
Find the eigenvectors of S, which we denote by { p;, p;.... }. Define 4, the true
linear dimensionality of the set of residuals, as the number of eigenvectors needed
to explain all of the variance in the residuals, apart from a tiny amount (which we

set to 10 %7 ) which may be considered as arising from rounding errors.

(iii) Transform the r; toa coordinate system with the axes lying along the eigenvectors,
with 4 ordinates (corresponding to the d eigenvectors which explain all the

variance other than that due to rounding errors). The new coordinates can then be
labelled as

e = (ein€z..eq = P(r-7)

where P = (p,|p:| .- |ps) . If the k th mode is being fitted, the first e -value
e;, is the k th shape parameter of this model for example i .

(iv) Attempt to fit non-linear functions to the data, modelling the second and
subsequent e -values as non-linear functions of the first.

e = flew) where 2 < j < d

The nonlinear functions used are polynomials:

fle) = ao; + (a)e) + (@)€1) . + (@m)en)”

where m is the order of the fitted polynomials for the mode in question. The
coefficients a,;,a,; etcare chosen so as to minimise the residual error E given

by:

d
E = X E
fo=2
where
N
E = 2 (e;-e)
i=1

The coefficients a,; (where 0 < f < m,and 2 < j < d) are obtained by
partially differentiating E; with respect to each a,;, and setting the derivative
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equal to zero: this gives m + 1linear equationsin m + 1unknowns, which canbe
solved by standard methods.

(v) Store the mean residual F, the eigenvectors { p;, p5, ... ps } and the coefficients
a;.

(vi) Compute the new residual vectors 7™ whose components are given by the
difference between the data e -value e;; and the modelled value e;; . Note that by
definition the first e —value e¢;; is the same for the model and the data. We
therefore ignore this zero component and set the first component of the new
residual vector as the residual error in the second e -value. The other components
are similarly shifted down, and thus the new residuals will have d -1
components, given by

oW . L
f"t; = €ij+1 — €ij4q

wherel < j <d-1 ;

Steps (ii) to (vi) are repeated to {it subsequent modes, until the residual errors are
small enough to be attributed to random noise - as with the linear model this is typically
when the unexplained variance is between 5% and 1% of the original variance of .

To compute the shape parameters (“ b —values”) for a new shape (i.e. a new set of
landmark point positions), we repeat the above steps, going through the modes
sequentially, but we use the eigenvectors p and the polynomial coefficients a that
were stored during training for the coordinate transformations.

To compute a shape instance (i.e a set of landmark point coordinates) from a set of
shape parameters, we reverse the above procedure. We evaluate the modes
sequentially, beginning with the last mode to be fitted (given by the last shape
parameter) first, and the first mode to be fitted (first shape parameter) last, again using
the stored eigenvectors p and polynomial coefficients a for each mode. The steps for
evaluating each mode are as follows:

(i) Read in the mean residual F, the true linear dimensionality 4 , the eigenvectors
{P1, - ps }, the degree of polynomial m and the polynomial coefficients a,;
corresponding to the mode to be fitted.

(ii) Setupanew vector e (of d components)of e -values. The first component is set
to the shape parameter b corresponding to the mode being evaluated. (For the
first mode to be evaluated, this will be the last shape parameter. For the last mode
to be evaluated, it will be the first shape parameter.) The remaining components
are determined by reversing equation (2), so that they are given by the polynomial
function of e, , to which (if applicable, i.e. if other modes have been evaluated) is
added the appropriate component of the “residual” r:

g = ay; + (ayNe) ... +amfe)" [ + rijy ]

(i) Compute a new “residual” vector r, given by a superposition of the the
eigenvectors { p;, -.. ps }, weighted according to the e -values {e;, ... e, },
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added to the mean © which was stored during training. (This is a reversal of the
eigenvalue decomposition used in building the PRPDM.):

" = F + pe, + pey, ... +pes = F + Pe

Steps (i) to (iii) are repeated until we have evaluated the mode corresponding to the
first shape parameter. The landmark position vector is then simply given by the final r .

5. Results

5.1 Tadpoles

We have trained a PRPDM on the tadpole data, using polynomials of degree 2 (i.e
quadratics) for each mode. We find that two modes of variation are sufficient to
describe 95% of the variance in the data. The modes are shown in Fig.7. The first mode
gives a sensible representation of bending, with the tip of the tail following a curved
path, and there is less spurious variation in the size of the head. The second mode of the
PRPDM is similar to the second mode of the Linear PDM. No ‘compensation’ mode is
required for the PRPDM. A scattergram of the two shape parameters of the PRPDM
is shown in Fig.8: the shape parameters appear to be more independent than for the
linear PDM.
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Figure 7. Two modes (mean +- 2 standard deviations) of polynomial regression PDM, trained on
the tadpole data. The bending is more accurately captured by this model than by the linear PDM,
and there is less spurious variation in the size of the head.

Figure 8. Tadpole data, PRPDM: scattergram of b, against b .
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5.2 Chromosomes

We have trained a PRPDM on the chromosome data using polynomials of degree 2 for
each mode. We find that, as for the linear PDM, eight modes of variation are needed to
explain 95% of the variance in the data. The first four modes are shown in Fig. 9. As
with the tadpole data we see that the first mode of the polynomial regression PDM
gives a sensible representation of bending. This improvement in the model is borne out
in the scattergram of the first two shape parameters (Fig. 10), which are clearly more
independent than the first two parameters of the linear PDM (Fig. 6). The other modes
of Fig. 9 are qualitatively similar to those of the linear model.
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Figure 9. First four modes (mean +- 2 s.d..) of PRPDM, trained on the chromosome data. The
first (bending) mode is more accurately captured by this model than by the linear PDM.

Figure 10. Chromosome data, PRPDM: scattergram of b, againstb,.

6. Discussion

We have formulated and tested PRPDM:s - shape models which are more general than
the linear PDMs which we have described previously. PRPDMs can generate
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non-linear modes of shape variation by modelling the loci of landmark points using
polynomial functions. We have shown that for two classes of shape, one synthetic and
one based on real image data, a PRPDM gives a more accurate representation of the
shape variation than the linear PDM, leading to a more specific model. APRPDM can
be used directly for image interpretation in Active Shape Model search [7].

Apart from examples such as those considered above, an obvious application for
these non-linear models is in the interpretation of 2D images of variable 3D objects.
We can already model small changes in viewpoint using linear PDMs; we anticipate
that larger changes in viewpoint will be satisfactorily modelled using a PRPDM. We
note however that the PRPDM will not necessarily succeed for all classes of non-linear
shape - it would for example fail if the training examples occupied the surface of an
ellipsoid in “shape-space”. We are currently investigating other forms of non-linear
shape model.
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