
Application of an Associative Memory to
the Analysis of Document Fax Images

S. E. M. O'Keefe? J. Austin
Advanced Computer Architecture Group

Department of Computer Science
University of York

York Y01 5DD

Abstract

An essential part of image analysis is the identification of objects within
the image. This paper describes the results of applying a binary associa-
tive memory neural network (ADAM), to the complex task of identifying
shapes in document images. The associative memory is used to implement
the generalised Hough Transform, exploiting the fast look-up ability of the
associative memory to give a high-speed image analysis tool.

1 Introduction

This paper describes the application of an associative memory neural network to
the task of identification of 2-D shapes in document facsimile images. The general
approach is similar in some respects to the generalised Hough Transform.

The main aim of the project as a whole
is to develop an architecture for the identifi-
cation of the principle structural and contex-
tual features of a document facsimile image
(see figure 1 for a typical example), to enable
a broad classification of the fax to be made,
and to facilitate the analysis of the content of
the document, in the light of the context de-
rived at this first stage. This problem is made
difficult by the wide variety of possible faxes
with which any recognition system must ex-
pect to be presented, containing any of large
number of textual and non-textual objects, the
noise inherent in the facsimile production and
transmission process, and the large size of the
images being dealt with. Neural networks are
an attractive proposition for this analysis task,
because of their ability to deal with the noise Figure 1: Document Fax Image
introduced by the fax system, and because of their ability to generalise from ex-
amples. The potential for the implementation of the neural network directly in
hardware, allowing the very rapid processing of data in parallel, is another attrac-
tive feature.

A primary sub-goal of the project is the location of structures within the im-
age, and the identification of these structures. Typical examples of structures in
technical documents might be paragraphs, abstracts and title blocks.

'email: sokCminster.york.ac.uk
temail: austintminster.york.ac.uk BMVC 1994 doi:10.5244/C.8.31



316

The following section describes briefly the generalised Hough Transform, to al-
low similarities to be drawn between it and the neural network approach described
later on. Section 3 describes the method we have used. Section 4 highlights the
benefit of the approach, and section 5 describes its application to a typical problem.

2 The Generalised Hough Transform
The generalised Hough Transform (GHT) [5] is an image processing technique
which abstracts away from the raw input data, and attempts to provide an image
representation which is both more concise and more meaningful than the raw data
from which it is derived. The GHT achieves this through image parameterisation,
in which a feature-detected representation of the image is mapped into its cor-
responding parameter space representation. The GHT does not rely on explicit
boundary detection and image segmentation in order to locate objects within an
image. Rather, information about parameterised objects is generated directly from
the feature-detected data.

The GHT is essentially a template matching paradigm. The template used is
a table containing information characterising the object to be detected, generally
referred to as the R-table. The R-table is built up from an analysis of the required
object. Suitable features characterising the object are selected, and for each dis-
tinct instance of these features an entry is made in the R-table. For example, a
shape may be characterised by the position of edge pixels relative to some arbitrary
object centre. In this case, the features are the edge elements in the edge-detected
representation of the object, and the table entries are the positions of the edge
elements relative to the object "centre". The "centre" is some arbitrary reference
point against which the position of the object boundary points might be measured.
The selection of the centre does not have any significance in terms of the object,
it is purely for reference. Thus, the R-table will contain a row for each distinct
edge-detected feature on the boundary, and each row will contain the offsets (from
the object centre) of all the instances of this feature on the object boundary.

To detect this object in some input image, the template is matched against
the image data. This matching process involves taking each point in the image,
evaluating its feature-value (in this case which edge-feature is matched), and then
using this feature to perform a look up in the R-table which contains the template.
From the row in the R-table which matches the feature, are retrieved the set of
offsets corresponding to that feature in the original object. The GHT asks the
question, "Assuming the feature at some location in the image matches one of
the R-table entries, what is the implied position of the object reference point
in the input image?" The implied origin is calculated as the vector sum of the
feature location in the image, and the recalled offset, for each offset recalled. A
"vote" is accumulated at each of the resulting locations. Assuming the feature
does indeed lie on the boundary of the object, then one of these votes will be cast
for the correct object centre. The other votes will be "randomly" spread around
the accumulator. As the image is scanned, the correctly cast votes will reinforce
to form a recognisable peak in the accumulator. Detection of these peaks will
indicate the location of objects within the original image. Incorrectly cast votes
should not reinforce as much as the correctly cast votes, so the peaks should be
distinguishable from this background noise.

This description has outlined the basic operation of the GHT. There are many
enhancements and extensions possible, to deal with rotation and scaling of objects,
multiple shapes, compound shapes, and so on.

The main benefits of the GHTs over most other object-detcting paradigms are



317

the simplicity of the algorithm, the resiliance to noise, and its ability to identify
incomplete or occluded objects.

The next section describes the application of an associative memory to the
object detection problem, using a paradigm which is similar in a number of respects
to the GHT. However, our approach improves on the Hough Transform in a number
of areas, and these will be discussed later.

3 Application of the associative memory

3.1 Overview
Section 3.1 is a general overview of the system, to guide you through the main
components and their interaction. Section 3.2 discusses the operation of the sys-
tem, and the associative memory used to implement the system, in more detail.
The training of the system and the detection of objects are discussed separately,
although both processes make use of the same associative memories.

3.1.1 Training

The purpose of the training cycle is to train an associative memory (ADAM) to
associate features of an object with a label for that class of objects, and with the
position of that feature in the object.

The first part of ADAM is a binary correlation matrix which learns the asso-
ciations between features (small sections of the image) presented to it, and labels
for each feature (i.e. it recognises arbitrary features). Each distinct feature has
a unique label. Features which are similar to within some threshold are assigned
the same label. No account is taken at this stage of the objects of which a feature
may be a part. The effort in concentrated on the reliable training and recognition
of features and recall of their associated labels.

The second part of ADAM is another binary correlation matrix which takes
these feature labels and associates them with the label for the object of which they
are a part, and with the offset of the feature from the object's notional "centre"
(the feature's position in the object). A single feature may be associated with any
number of object label / object centre offset pairs, dependng on the objects which
contain that feature. Simple features (e.g. line segments) will occur in many
different classes of objects, more complex features will be specific to perhaps a
single class. Thus this section of the memory operates as the GHT R-table.

3.1.2 Object detection

The purpose of the object detection cycle is to search the image for features which
the system recognises, associate them with objects at specific locations, and accu-
mulate the evidence for objects of different classes at locations within the image.

The first part of the system is used to recognise features. A window is scanned
over the image, and if a feature is recognised by ADAM in the window, the feature
label recalled by the first stage associative memory is passed to the second stage.

The second stage of the ADAM recalls all the object label / object centre offset
pairs with which the feature is associated. These pairs are used to indicate which
locations on the image are candidate centres of objects having that label. The
possible centres are located at the vector sum of the current feature location and
the recalled offset. Every time a label / offset pair is recalled, the object label
is added into an accumulator grid over the image at the calculated object centre.



318

M

1

0

1

1

0

1

0

1

1

0

0

0

0

0

0

I 1

1

1

0

1

1

0

0

0

0

0

0

0

t
1 0

0

0

0

0

0

t

0

1

—

0

—1

T

0

0

1

0

—

(a) Binary correlation
matrix M, with input
A and output B

(b) Tuple decoder (T).
The tuple has two in-
puts from the origi-
nal image I, giving four
outputs into the array
A.

Figure 2: Correlation matrices and input tupling

If several locations are recalled for a particular feature, all these locations are
incremented.

The end result is an image, in the accumulator, of the likelihood that objects of
particular types are at each location, expressed as the sum of the number of labels
each location has received from features recognised in the image. Thresholding the
accumulator returns the most likely location or locations for objects of different
classes, just like in the GHT.

3.2 Operation of the associative memory

We now describe the operation of ADAM within this system in detail.
The associative memory uses binary correlation matrices to learn and recall

associations between arrays of binary data. An example of such a matrix is shown
in figure 2(a). A is the input array and B is the output array. The matrix
M represents the outer product of A and B. All elements of M are set to 0
initially. During training, the elements of M record the intersections of the rows
corresponding to the bits set to 1 in A, with the columns corresponding to the
bits set to 1 in B. At these intersections the elements of the arrays are set to 1.
Each subsequent pattern is written over existing patterns, forming the logical OR
of the patterns.

To recall an associated pattern from the memory, the test pattern is placed in
A and a matrix multiplication is performed, with the result placed in B. The result
will be a non-binary array, which must be thresholded to give a binary result. The
thresholding method used is that developed by Austin [3], and is referred to as N-
point thresholding (sometimes termed L-max [7]). In this method, every original
pattern in B has N bits set. On recall, the N elements of the array which have the
highest value are set to 1, and all others are set to 0.

This basic correlation matrix can be used to recognise patterns on the input,



319

by associating them with a particular label. However, the number of patterns
which can be taught before interference occurs between them is relatively small,
particularly where patterns are similar. To overcome this capacity problem, the
input to the correlation matrix is preprocessed with an orthogonalising preproces-
sor. This increases the hamming distance between patterns to increase the overall
reliability of recall.

The preprocessing method used is tupling [6] of the input. Elements of the
input pattern are mapped into (fixed size) tuples (see figure 2(b)). A simple
function is applied to these tuples which returns a value, indicating the state
implied by the values of the tuple elements. The tuple has a separate output for
each possible state, only one of which will be at logical 1 at any time. The function
used in this instance is a simple binary decoder, which interprets the pattern of bits
in the tuple as a binary number, and assigns the state accordingly. The outputs
of the tuple decoder forms the input to the correlation matrix. This preprocessing
also has the advantage of making the input pattern more sparse than the original
image, so fewer l's are ORed into the matrix, and the input pattern has a fixed
number of bits set to 1, making the behaviour of the system more predicatable.

As was noted above, ADAM is in two stages, each stage having a correlation
matrix, input and output buffers, and a thresholding mechanism. The input to
the second stage is the thresholded output from the first stage. No tupling of
this input takes place. Training of this second stage takes place in exactly the
same way as for the first stage. On recall, the output from the second stage is not
N point thresholded, but simply 'Wilshaw' thresholded [9].

3.3 Training the system

To train a new 2-D pattern, an object is selected and an object centre is selected.
At points around the object, where the salient features are, small windows are
selected (see figure 6). At each window position ADAM is trained as follows.
The training takes place in two stages. First we describe how the first correlation
matrix is trained to recognise features. Then we show how the second correlation
matrix is trained to recall the object label / object centre offsets.

The first correlation matrix in ADAM is trained to associate the features we
wish it to recognise with a unique label, X. This recognition of features is in-
dependent of the objects of which the features may be a part. The training is
carried out as described above, with a slight modification — before training the
feature into the system, the first correlation matrix memory is tested to determine
whether the feature (or a sufficiently similar feature) has already been taught. If
it has, we proceed straight to the second part of the training cycle. If the feature
is not recognised, the system generates a (random) unique label for it, teaches the
feature to the recogniser, and proceeds to the second stage. The algorithm for
training X into the first stage associative memory is thus:

For each feature you wish to train
Position the window over the feature
Calculate the state of each tuple, and put these in the input array
Perform a matrix multiplication to get the raw output
N-point threshold this output
If a valid label is produced by thresholding (feature recognised)

Train second stage
Else (feature not recognised)

Generate a new unique label, and place this in the output array
Train correlation matrix to associate input and output arrays



320

Train second stage

The second stage of the system associates a particular feature, which has been
trained into the first correlation matrix, with an object label / object centre offset
pair. The object label is a unique label for the class of objects which the training
object belongs to, and is assigned by the operator. The object label is N-point
coded, that is, exactly N bits in the label are set to 1. Using this N-point coding
scheme, we can represent a very large number of classes very compactly. For
example, if K (the size of the label) is 40 bits, and TV (the number of bits set) is
3, we can represent KCN, or 9,880 different classes. We need to learn the object
class label so that we can recall which classes of objects the feature belongs to.

The object centre offset is the vector displacement of the object's notional
centre from the feature we have trained into the first correlation matrix. To
calculate the offset vector, for each feature we assume a rectangular grid of points
overlays the image, centred on the current feature and extending over most of the
image (we do not cover the whole image for reasons of economy). The fineness of
the grid is set before training the system. Given the positions of feature and object
centre, we approximate the position of the centre with the closest grid point. We
need to learn the centre offset so that we know where the feature occurs in the
object, relative to its centre.

Because the same feature may occur a number of times in the same object
(particularly simple features such as line elements), and may occur in many differ-
ent classes of objects, we need to be able to correctly associate together the object
labels and object centre offsets. Because of the way in which the correlation ma-
trices are taught, we can recall many such pairs in parallel, but since the labels
and offsets have been ORed together into the memory, we may find it difficult to
determine which label to associate with which offset. We overcome this problem
by binding the two variables together, by forming their tensor product [8]. The
second stage of the system associates the feature label with this tensor product,
and on recall, we can successfully unbind the variables to give the object label /
object centre offset pairs.

(i) Example Tensor Products

Coded object label

tit) Recall of overlaid tensor products from single feature

Recalled Tensor
Feature label from

first stage

SECOND

STAGE

MEMORY

i

1

1
1

Coded object centre offset

Figure 3: Result of training more than one tensor product for a feature, (i) Two example
tensor products, for different object label / object centre offset pairs, (ii) Recall of the
two tensor products overlaid

The result of this recall of multiple tensor products is illustrated in figure 3.
Figure 3(i) shows two tensor products formed from different pairs of object labels
and centre offsets. If both these tensor products are associated in the second stage
memory with the same feature (indicating that the feature could be a part of either
of two different objects), then when the second stage is tested, we recall the two
tensor products overlaid (figure 3(ii)). From this representation, we can extract
the appropriate pairs of values for the variables.



321

3.4 Detecting objects in images

The algorithm for detecting objects in images is straightforward. A small window
is scanned over the image, at some small spatial interval. At each position, the
first stage matrix is tested with the part of the image in the window. If the
feature is succesfully recognised (the thresholding returns a valid feature label),
the recalled feature label is used to recall the object label / object centre offset
pairs from the second correlation matrix. (In a truly parallel implementation, the
image would be processed in parallel, rather than serially.) The output from the
second correlation matrix consists of one or more tensor products ORed together
(as in figure 3) corresponding to the different positions of the feature within the
object or objects.

To record the results of the processing as
the window is scanned over the image, we cre-
ate an accumulator grid. This grid covers the
whole image, at the same spatial interval as the
window is scanned, i.e. there is a grid point
for each location tested, to record the results
of the test at that location. Each point in the
grid can hold the object labels in their N-point
encoded form.

The matrix recalled from the second stage
corrrelation matrix contains object labels and
their corresponding centre offsets. In the sim-
ple example in figure 3, it can be seen that
each offset is encoded as a single bit. The la-
bels corresponding to each offset (each bit set
to 1) may therefore be recovered simply be tak-
ing the column in the matrix corresponding to
that position. In other words, for each column
which contains a label, the offset appropriate
to that label is given by the column's position.
(A more sophisticated coding of the offset would require a more sophisticated
recovery of the object label / centre offset pairs, but the principle would be the
same.) From these offsets (the positions of object centres relative to the position of
the feature) the positions of the possible object centres in the image are calculated
(figure 4).

At each of these positions, the correspond-
ing label from the tensor product is added into
the accumulator. (Because of the errors caused
by approximating the object centre position on
the grid, and the finite scan intervals, the la-
bels are summed into a block of points rather
than a single point. The centre of the block is
weighted more heavily than the edges, accord-
ing to the mask shown in figure 5.) Thus, as
the window is scanned over the image, more Figure 5: Object label increment
and more labels are added into the accumu- mask
lator. Note this essential difference between our system and the GHT. We are
accumulating labels, corresponding to the object class. Labels for any class of ob-
ject may be added into the accumulator, and thus many classes of objects may be
searched for in parallel. Because the labels are N-point encoded, the accumulated
evidence at each point may be N-point thresholded to reveal the dominant class
at that point. The GHT only accumulates votes at each location, as the R-table

Figure 4: Calculation of the ob-
ject centre positions from the fea-
ture position and the centre offsets,
assuming two offsets have been re-
called for this feature

+1

+1

+1

+1

+2

+1

+1

+1

+1



322

for a specific shape is used as a template.
The end result is an accumulator whose contents describe the distribution of

objects over the image. As with the GHT, the peaks in the accumulator indicate
the most likely positions for objects of that class. However, our system provides a
much richer description of the image, by accumulating labels for a large number
of possible object classes in parallel. The results of N-point thresholding these
accumulated labels is a measure of the confidence that a particular object is at a
particular location.

In summary, the algorithm for object detection is as follows:

For each location on the image
Take a window on the image
Tuple the contents of the window
Test the first stage correlation matrix
If a feature is recognised

Test the second stage with feature label, and recall tensor product
For each object label / centre offset pair in the tensor product

Calculate the object position in the image
Add the label into the accumulator at this position

N-point threshold the accumulator to recover the object positions

3.5 Relationship to ADAM Associative Memory
The associative memory application described here has been developed using the
the Advanced Disributed Associative Memory (ADAM) software library [3], with
minor extensions to the basic ADAM mode of operation. This software was specif-
ically designed for image analysis, and has since been extended as the result of
further work on the analysis of infra-red ground images [1], [2]. Because the asso-
ciative memory uses the ADAM library, it will be possible to port it to hardware
(C-NNAP) specifically designed to implement vision problems using ADAM func-
tions [4].

4 The benefits of using ADAM
Similarities exist between the basic mode of operation of the associative memory
described above (and the ADAM software) and the GHT. In its simplest form, an
ADAM accumulates evidence for the appropriate output, given a particular input,
in the raw output from the correlation matrices. This accumulated evidence is
then thresholded to determine what the appropriate response is.

Compare this with operation of the Hough Transform, which accumulates ev-
idence for the existence of particular objects in an image. This accumulated evi-
dence is then thresholded to determine the appropriate response.

Given this similarity in the basic function of the Hough Transform and ADAM,
we have attempted to produce an image analysis system which performs the same
basic task as the GHT, that of detecting objects in images. There are distinct
advantages in using the ADAM approach to the problem. In image analysis,
particularly in the analysis of large images such as those produced by facsimile
machines, speed of processing is an important factor. The correlation matrices at
the centre of ADAM, combined with the orthogonalising pre-processing and the
N-point coding and thresholding, enable us to perform the template matching in
a way which is inherently parallel. The binding of object labels to object centre
offsets using a tensor product form means that these pairs of values can be trained



323

into the same memory, and then recalled in one step. The values of the variables
are only unbound later, as needed.

Both our system and the GHT look for features in the image at each point, get
the centre offsets associated with these features, and increment an accumulator.
The GHT associates the features with the offsets by indexing into a table using
the feature. The speed with which the GHT can do this look-up will depend on
the number of features trained (and hance the size of the table). If n features are
trained, then a binary-tree implementation of the table would take O(log2n) to
search. By comparison, ADAM does the association between features and centre
offsets in a fixed time, independent of the number of features which have been
taught.

The parallelism extends to the implementation of the ADAM. The ADAM
library has been ported to specialised parallel hardware (C-NNAP). Hence, image
processing using ADAM can be done using this hardware with the associated gain
in speed.

One may ask why we don't just use a single ADAM to convolve the image of the
whole shape, instead of using the complex method described here. The approach
described here is less susceptible to interference from clutter, and can deal with
objects which are very large. If a single ADAM is used and a large window is used,
then there is a high likelihood of clutter within the image affecting recognition.
Using this approach each feature ADAM sees is small, is less likely to be obscured
by other structures, and has a better signal to noise ratio.

5 Initial results
As an example, to demonstrate the via-

bility of the approach, the system described
above has been applied to the image shown in
figure 1. Figure 6 shows an object in the im-
age. The system has been trained on this ex-
ample of a single class of objects. The object
is characterised by the features marked with
the small squares on this object. This object
is assigned the notional centre marked by the
cross "+". The training window is 21 by 21
pixels, the offset of the object centre from the p i g ^
feature centre is recorded on a 21 by 21 grid, . . , , * , ,, „ ,

... . j . , . r , . , ° centre is marked with a + , and
with a grid point spacing ot ten pixels. . r , , . ,

After training, the image was scanned at in- gained features are marked with
tervals of five pixels (both horizontal and ver- b o x e s ' (Flgure 1S n o t t o scale)
tical intervals). At each point the first stage was tested to see if the window
contained a recognisable feature. If a feature was recognised, the second stage
was tested to recall the object label / object centre offset pairs. The labels were
summed into the accumulator array at the positions indicated by the feature po-
sition and centre offset.

The results from scanning the image are shown in figure 7. Each small cross
indicate a position which was recalled as a candidate object centre (there is no
indication as to how many votes each location received). As can be seen, these
candidate centres are spread widely over the image, indicating that features asso-
ciated with this particular object also occur in a large number of other objects.
Because only a single class has been taught, only a single class label has been
recalled, and we are able therefore to do a simple thresholding of the image. On



324

Figure 7: Fax image after processing. Candidate object centres are marked by crosses

thresholding of the accumulator, the correct object centre was returned.
Figure 8 is a surface plot of the contents of the accumulator. The bottom

of the original image corresponds to the near edge of the surface, labelled "X".
On the z-axis is plotted the number of counts of the label for the object we are
are searching for, at each point in the accumulator. It can be seen that there
are many small peaks in the accumulator space, but that the principle peak is
centred correctly at the orginal position of the object reference point. The spread
of this principle peak is small, indicating that the location of the object has been
well defined despite the relative coarsness with which object centre offsets were
recorded, and with which the image was scanned.

6 Summary
This paper has described an initial implementation of an associative memory for
the detection of complex objects in complex images, by implementing a version of
the GHT using the ADAM Associative Memory library. These initial results show
that the approach is valid for this difficult task. By exploiting the strengths of the
ADAM system, in particular the parallel look-up made possible by the associative
memories, we can expect substantial gains over serial implementations.

7 Acknowledgements
During this work Simon O'Keefe was supported by a PhD CASE award from
the Government Communication HQ and the EPSRC. Thanks are due to Aaron



325

Figure 8: Surface plot of contents of accumulator. The X and Y axes are the X and Y
axes of the original image. The Z axis shows the confidence is the existence of an object
centre at each point (in this case, the number of object labels in the accumulator in at
each point)

Turner and Steve Buckle for their help with the ADAM software.

References
[1] J Austin, M Brown, I Kelly, and S Buckle. Adam neural networks for parallel vision.

In JFIT Technical Conference 1993, pages 173-180, 1993.
[2] J. Austin and S Buckle. The practical application of binary neural networks. In Proc.

of the UNICOM seminar on Adaptive computing and information processing., 1994.
To be published.

[3] J. Austin and T.J. Stonham. The adam associative memory. Technical report, Dept.
of Computer Science, University of York, 1987.

[4] J Austin, A Turner, S Buckle, M Brown, A Moulds, and Rick Pack. The cellular
neural network associative processor, C-NNAP. IEEE Computer, 1994. Accepted for
publication.

[5] D. H. Ballard. Generalising the hough transform to detect arbitrary shapes. Pattern
Recognition, 12:111-122, 1981.

[6] W. W. Bledsoe and I. Browning. Pattern recognition and reading by machine. Proc.
Joint Comp. Conference, pages 255-232, 1959.

[7] D. Casasent and B. Telfer. High capacity pattern recognition associative processors.
Neural Networks, 4(5):687-698, 1992.

[8] P. Smolensky. Tensor product variable binding and the representation of symbolic
structures in connectionist systems. Artificial Intelligence, 46(1-2):159-216, 1990.
Artif. Intell. (Netherlands).

[9] D. J. Wilshaw, O. P. Buneman, and H. C. Longuet-Higgins. Non-holographic asso-
ciative memory. Nature, page 222, June 1962.




