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Abstract

The focus of this work is on systematic methods for the visualization
and quality assessment with regard to classification of multivariate
data sets. Our novel methods and criteria give in visual and numer-
ical form rapid insight in the principal data distribution, the degree
of compactness and overlap of class regions and class separability, as
well as information to identify outliers in the data set and trace them
back to data acquisition. Assessment by visualization and numeri-
cal criteria can be exploited for interactive or automatic optimization
of feature generation and selection/extraction in pattern recognition
problems. Further, we provide a novel criterion to assess the credibil-
ity and reliability of the visualization obtained from high dimensional
data projection. Our methods will be demonstrated using data from
visual industrial quality control and mechatronic applications.

1 Introduction

Systematic optimization of pattern recognition systems requires reliable criteria
for performance evaluation. The objective of this optimization process is the di-
mensionality reduction and data compression under the constraint of retaining the
significant information for discrimination in classification. Based on measurement
data this can be achieved by systematic methods for feature selection or feature
extraction [1], [5]. Feature extraction comprises systematic methods for strict
mathematical treatment as well as heuristic approaches, where transformations
for feature extraction are chosen from a multitude of available signal or image
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transformations according to experience and apriori knowledge of the application
to accomplish a compact and invariant representation for classification. This often
intuitive approach will be denoted in the following as feature generation to achieve
a distinction to systematic methods of feature selection/extraction. Examples for
feature generation methods are coocurrence matrices for texture classification or
gradient image and gradient histograms [8]. The parameters of the feature gen-
eration methods have to be tuned according to the pattern recognition problem.
Tuning of these parameters is commonly carried out according to observations of
the operator or system developer for a limited set of characteristic or pathologi-
cal patterns or images. Generally, it is too time consuming and thus not feasible
to assess parameter settings for all patterns or images of training and test sets
individually and interactively. Our work provides methods for systematic param-
eter optimization of feature generation procedures according to complete sample
sets based on interactive and non-interactive approaches. For this aim we em-
ploy mappings for dimensionality reduction and structure or topology preserva-
tion for visualization of high-dimensional data spaces. Furthermore, we develop
non-parametric quality measures as criteria for overlap and separability of class re-
gions in feature spaces of arbitrary dimensionality. These methods provide insight
in the underlying distribution and data structure and thus allow the transparent
and systematic development of a pattern recognition system. In the following we
will present examples and applications which were examined as problem instances
using our methods. Then we will proceed, introducing and demonstrating our
methods. Concluding, we will indicate potential improvements.

2 Benchmarks and Applications

We have generated three two-dimensional Gaussian distributions for a two-class
problem with a varying degree of overlap, denoted as ovtrx, over2, and over3 with
588 vectors and two classes each. Further, we generated a Gaussian distribu-
tion that is bimodal for class 2, denoted as bimodal with 780 vectors. The fifth
data set with 1368 vectors, denoted as banana, consists of five Gaussian clusters
per class, such that a banana shaped non-parametric distribution results for the
class regions. These data sets are illustrated in fig. 1. Further we considered the
well known insdata [13], with three categories for the different iris species setosa,
virginica, and versicoloT, characterized by petal and sepal length and width. A
train and a test set is available with 75 vectors each. The most important data
sets come from visual industrial quality control problems. Within the national col-
laborative research project SIOB a generic system for visual object inspection in
industrial manufacturing is developed. The research objective is the integration of
image processing, knowledge processing, pattern recognition, and neural network
technology to accomplish a flexible inspection system that is not specialized to a
single task or object, but can be easily configured for variations of the inspection
task [7], Rapid system configuration requires a transparent and lucid user inter-
face and a high degree of autonomy, achieved by self-monitoring and backtracking
capabilities. Fig. 2 shows the components of the inspection system. The visualiza-
tion interface and the arrow connections from the functional blocks to the control
unit indicate the places were the methods presented in this work are required.
Two relevant data sets were chosen from this research work for the demonstration
of our methods. The first one was extracted from automatic cut-out objects (s.
right part of Fig 2), which were examined for fissures and cracks of the casing. The
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Figure 1: Benchmark data sets overi, over2) overs, bimodal, and banana
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Figure 2: Block diagram of the SIOB inspection system and sample object



198

resulting data sets comprise 240 38-dimensional vectors with 3 categories and will
be denoted as cuti to cuts. The second was obtained from stuffed PCB-inspection,
where pins of a large bus connector were checked for correct penetration.

Coocurrence matrices [3] were computed of individual pins and from these
seven characteristic moments were determined. This 7-dimensional data set with
185 vectors and 3 categories will be denoted as pins. To demonstrate the general
validity of our methods, we will show their application to a mechatronic prob-
lem. From operating point estimation for stall monitoring of compressors [12]
29-dimensional data sets with 420 vectors per set and four categories for the dif-
ferent operating point regions,denoted as comps, to compy, were also regarded in
this work.

3 Visualization of Multivariate Data
The visualization of high-dimensional data by projection in two or three dimen-
sions can give considerable insight in the principal data distribution, substructure
in data, shape of class regions, and an estimation of the complexity of the class
borders for classification problems. Straight forward visualization methods in two
or three dimensions include arbitrary selection of components, first principal com-
ponents [1], first components for parametric or non-parametric scatter matrices
[1], and by plotting data points using the values of the discriminance functions as
coordinates. The dimensionality of the resulting plot depends on the number of
categories [1], Due to the nature of these methods the structure of the data set
is not necessarily preserved, resulting in distorted and unreliable displays. One
approach to obtain a topology preserving mapping is the Kohonen self-organizing
feature map (SOFM) [6] which is a very useful tool for exploratory data analysis
[11]. But due to the quantization carried out by SOFM along with the topology
preserving mapping the SOFM is not suited for tracing the position of individual
objects from the sample data set. The algorithm of Sammon [10] provides the
interesting property of structure preserving mapping of the complete sample set.
Sammon's Non-Linear Mapping (NLM) proved to be well suited for our applica-
tions and we found it an extremely useful tool for feature space evaluation. In
the left column of Fig. 3 NLM-mappings of our data sets are displayed. Due to
its gradient procedure the NLM-mapping is extremely slow and cannot deal with
identical vectors in the data set. The quality of the resulting mapping, which im-
plies its reliability of drawing conclusions from the NLM with regard to the data
arrangement in high-dimensional space, is assessed by Sammon using the MSE of
distance preservation. We enhance the quality assessment by introducing a topol-
ogy quality measure for the mapping in the next section. Further, we introduce
a specialized mapping algorithm for two-dimensional data displays of multivariate
data that is superior to the NLM in approximately two orders of speed.

4 Quality Assessment of Visualization
Reliability

For assessment of mapping quality in terms of topology preservation we designed a
non-parametric credit assignment scheme based on the nearest neighbor principle.
The neighborhood in the original space X and the mapped space Y is examined,
concerning the order of the occurrence of nearest neighbors in both spaces of every
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Figure 3: Two-dimensional projections of irisdata (top), pins, cut4, and
s (bottom) by NLM (left column) and Visor (right column)
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feature vector. Credits are assigned to a feature vector regarding the nearest
neighbors NNi (i = l..ra) according to the following criteria:

3 credits, if NNt in X = NNi in Y
2 credits, if NNt in X = NNj in Y j = l..n,

1 credit, if NNi in X = NNk in Y Jfc = n..m
0 credits else

Here n denotes the number of nearest neighbors under consideration and m denotes
the enlarged number of nearest neighbors for the third credit assignment criterion.
The maximum quality for a feature vector with this scheme amounts to 3n. Thus
averaging over all feature vectors K of a data set, the quality measure of a mapping
qm is computed by:

1 *
?m = 2- creditsi (1)

. =0

This quality measure provides a criterion together with the MSE to assess the
quality and reliability of a mapping for a data set. The quality achievable by a
mapping is of course dependent a the intrinsic dimensionality of the data [1]. Our
criterion performed well and conformed with observations of mapping credibility.
Individual quality measure instead of mean quality measure could be employed for
the localization of mapping faults.

5 VISOR - a Fast Visualization Algorithm

Motivated by NLMs interesting properties and evident drawbacks, possessing a
complexity of O(N2*L*iterations) our research focused on the development of a
fast alternative providing approximately O(N) complexity.
Thus, the Visor-algorithm was devised, based on a pivot-point strategy:

1. Find the pivot-vectors Vi, V2, V3 in the original L-dimensional space that
provide a convex enclosure of the remaining data points by:

(a) Compute centroid M of data set in original space

(b) Determine pivot-vector Vx such that d(ymax — Vi,M) = maxf]_l(d(vt, M))

(c) Determine pivot-vector V2 such that d(vmax = V2,Vi) = maxfL1(d(v,•., Vi))

(d) Determine pivot-vector Vs such that (d(vrnax = Vs, Vi) = max^=1 (d(v,, Vi))i
d(vmax = Vi,V1) = maxfL^diviM))) Vfo # V, A v, ? V2)

2. Placement of the corresponding pivot-points JP1? P2, P3 of the pivot-vectors
Vi, V2, V3 in the two-dimensional mapping space

3. Placement of the remaining (N-3) feature vectors employing the pivot-points
Pl, P2, Pi as follows:

• Divide the lines PiP2 and P2P3 according to the distances to P in the
original space, introducing division points D^ and D2

• Compute the intersection of the two lines perpendicular to P1P2 and
P2Pz through the division points D\ and D2. This intersection defines
the 2D-mapping point of P
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data set

irisdata
pins
cuti
comps

NLM
gm

0.6667
0.6310
0.6802
0.4527

MSE
0.0098
0.0099
0.0322
0.0933

Visor

0.6711
0.6145
0.6647
0.4207

MSE
0.0093
0.0336
0.0184
0.1628

Table 1: Mapping reliability qm for NLM and Visor. Minor topological deviations
lead to the presented values of qm € [0.7,0.4], but the principal structure of the
data still can reliably be observed. For values qm < 0.3 the mapping is to be
considered as unreliable

The Visor-algorithm preserves no distance value exactly but the same holds for
the NLM, as all distances are approximated by the gradient procedure and due to
the error criterion small distances are preserved with higher accuracy than large
distances, resulting in undesired data clustering. Visor gives a rapid mapping of
approximately the same quality as the NLM. Fig. 3 compares the Visor results
in the right column with NLM results in the left column. In some cases of our
work observed quality was less than in others beyond the quality obtained with
the NLM. For the majority of cases Visor gives a satisfactory alternative for the
two-dimensional visualization of multivariate data, providing « O(N) complexity
and thus a speed advantage of K 100 with regard to NLM (s. Table 1). Recently,
we found another method for 2D-visualization, based on the exact preservation of
2(M —3) distances and using a Minimal Spanning Tree (MST) approach [9]. We will
compare this method with NLM and VISOR in future work. A further advantage
is, that identical vectors in the data set are no obstacle for Visor which is a great
benefit for the analysis and visualization of SOFMs. In case of a low mapping
quality indicated by our measure qm and the MSE and high reliability demands a
complementing NLM run can be carried out for comparison with the fast preview
of Visor.

6 Assessment of Class Regions Overlap

In addition to the visual information conveyed to the human operator of a pattern
recognition system, which is in our case the visual quality inspection system (s.
Fig 2), numerical measures are required for systematic and automatic parameter
optimization in the feature generation process during system configuration. In
this section we present a family of three non-parametric quality criteria measuring
the overlap of class regions. The criteria of course can also serve for systematic
feature selection/extraction computing overlap in the original and in the reduced
space, indicating overlap increase/decrease by the selection/extraction process. We
employ a nearest neighbor scheme largely motivated by the ideas of non-parametric
scatter matrices and the edited nearest neighbor approach [1]. The n-nearest neighbors
of every feature vector and their corresponding class affiliation are employed for
overlap assessment. Overlap degree is determined for an individual feature vector
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Here fc, denotes the weighting factor for the position of the i-th nearest neighbor
NNi, dNNt denotes the distance between P and NNi, dNxn denotes the distance
between P and the most distant nearest neighbor NNn, qXNN. denotes the overlap

for P with regard to NNi, wx denotes the class affiliation of P, and w, denotes the
class affiliation of NN,. We define an influence of every NNi decaying with the
position in the nearest neighbor list, thus the weighting factors ki are defined such
that the influence decreases to zero for NNn. The quality qx is increased (+kt) for
every NNi with wx = w{ and decreased (-ki) for wx ̂  wt. The range of gXiNN is
therefore between ^"=i <̂ an<^ " S L i ^ i - Normalization of the overlap measure
qo in the interval [0,1] is obtained by adding Y17=i ^' t o Y^i=i 1^,NN and dividing
the resulting sum by 2 ^ " _ t i;.
Neglecting the weighting factor k, for each NNi reduces the overlap computation
to:

(3)
dNNi

Here 2Z!=1 djv;^ c denotes the sum of all distances to nearest neighbors with wx ^

Additionally, neglecting the distances d(NNt) in the overlap computation leads to:

1o ~ 1 (4)
n

where nc denotes the number of nearest neighbors with wx ^ Wi. During overlap
degree computation a hypothesis for P being an isolated vector (outlier) or a
member of a small isolated group is checked. The hypothesis for an outlier is
considered true, if for all n nearest neighbors wx / w, holds. The hypothesis for an
isolated group of size v is considered true if for v nearest (closest) neighbors wx ̂  W{
holds and for the remaining n — v neighbors wx ^ w, holds. This information
complements the visual impression of outliers and isolated groups for a human
observer, providing additional relevant criteria for automatic system optimization.
In Table 2 overlap measures are computed for benchmark data sets and compared.
For application data sets only the most exact measure qo was computed.

7 Assessment of Separability

In addition to the numerical assessment of overlap a measure for the complexity
of the class boundary is highly desirable. This complexity measure gives the
separability of the pattern recognition problem. Though overlap and separability
measure are related they have their distinct meaning. As can be seen from Table 2
for banana, no overlap does not imply easy (linear) separability. Thus we propose
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data set
overi
over2

over3

banana
bimodal
irisdata
pins
CUti

comp$

Qo

1.0
0.9911
0.9753

1.0
0.9909
0.9156
0.9527
0.8330
0.9788

I'o
1.0

0.9931
0.9794

1.0
0.9898

-
-
-
-

I'o
1.0

0.9928
0.9782

1.0
0.9900

-
-
-
-

0.9966
0.9820
0.9575
0.9927
0.9807
0.8666
0.8919
0.7901
0.9548

Table 2: Overlap degree and separability for benchmark data sets

two means for discerning the separability or the class boundary complexity. As
a visual means we sketch a piecewise linear approximation of the actual class
boundary in our projection plot (Voronoi diagram, s. Fig. 4), thus giving the user

Figure 4: Sketch of class boundaries in the four components of irisdata (test set)
by Voronoi plot. Observation of feature values within class regions can serve for
visual selection of significant features

an idea of class regions and class boundaries. As a numerical means we propose to
employ the piecewise linear boundary generated by a nearest neighbor approach as
an approximate separability measure. The number of line segments of the piecewise
linear boundary are proportional to the complexity of the class boundary and thus
to the separability. Reducing nearest neighbor methods, e.g. condensed/reduced
nearest neighbors[4][2], retain only vectors close to class boundaries for classification.
These vectors approximate the class boundary by a Voronoi tessellation. Thus, the
number of vectors retained after the reduction is itself a measure of separability.
This can be expressed denoting M as the initial sample set size and K as the
number of selected or retained vectors by:

M - K

M
(5)

Obviously, qs tends to one for well separable data sets and to zero for completely
overlapping sets. The measure definitely is influenced by class overlap, but in
contrast to the previous measures it gives no hint on outliers or isolated groups
(s. Table 2).
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8 Conclusion and Future Work
We have introduced and demonstrated methods for multivariate data visualization
and non-parametric overlap assessment and separability measure. These tools offer
support for interactive as well as for automatic optimization of pattern recognition
systems, we have integrated our methods in the inspection system prototype for
visual industrial quality control (s. Fig 2) and have achieved encouraging results for
"in-the-loop" system optimization. In current work we examine the modification
of NLM by introducing our quality measure qm into the gradient procedure to
obtain a topologically correct mapping. Further, we will investigate our criteria
with regard to linearity and absolute interpretation independent of data sets.
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