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Abstract
Existing Shape from Shading algorithms are not robust enough to work reliably with real
images. We present a new paradigm for Shape from Shading based upon & scale space sur-
face representation. Using this representation, the Shape from Shading problem becomes
one of forming a surface from gaussian basis functions in such a way that the shading in the
original image is explained. The algorithm is both fast and robust, producing convincing
results. In its current form, the algorithm requires the reflectance function to be approxi-
mately circularly symmetric. We show results for synthetic images, both with and without
added noise, and for real Scanning Electron Microscope images.

1 Introduction

Images of three-dimensional objects often show variations in brightness, or shading,
across object surfaces, and this information provides an important visual cue for re-
covering the shape of an object. Exploiting this information is one of the classic prob-
lems of computer vision, known as the shape from shading (SFS) problem [1].

To formulate the problem, we define a three-dimensional Euclidean co-ordinate sys-
tem, where the z axis projects directly towards the viewpoint and the x and y axes co-
incide with the axes in the image plane. We assume orthographic projection with the
light source at infinity. The visible surface is the function z(x,y), and the surface gradient
is the pair (p,q) where p = dz/dx and q = dz/dy , iep and q are the rates of change of
surface height in the x and y directions respectively. The observed brightness of a sur-
face point is directly related to the surface gradient, the position of the light source and
the reflectance properties of the surface. The relationship between the image and the
surface gradient is expressed by the image irradiance equation E(x,y) =R(p,q), where E is
the image, and R is the reflectance function which embodies both the effects of the imag-
ing geometry and the reflectance properties of the surface. We assume that the reflec-
tance function is of a known analytic form.

The SFS problem is to recover the surface function z(x,y) from the brightness image
E(x,y) by "inverting" the image irradiance equation. Since the problem is undercon-
strained, the classical approach has been to introduce a smoothness constraint to regular-
ize [1] the problem and thus allow a single solution to be found. The problem is then cast
as a large non-linear optimisation task, and iterative techniques are used to progressive-
ly refine estimates of surface height or gradient. Such algorithms typically suffer a
number of drawbacks:

• Convergence is slow and not robust, especially with noisy data.
• The recovered surface gradients may not be integrable (ie they cannot be inte-

grated to form a physically realisable surface).
• Algorithm parameters may need careful tuning.
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• Boundary conditions are required.
• The smoothness constraint can make results overly smooth [1].

In this paper we present a novel scale space [3] SFS algorithm. The algorithm finds par-
tial solutions at a range of resolutions, or scales, and combines these to form a complete
solution. The approach has a number of advantages:

• Convergence is robust.
• No explicit smoothness constraint is required.
• The algorithm operates in the space of integrable surfaces, so the solution

surface is always integrable.
• No boundary conditions are required.

We show results for synthetic images, both with and without additive noise, and for real
Scanning Electron Microscope (SEM) images. The SEM imaging process is particularly
appropriate for SFS when the usual assumptions are made, since the projection is ortho-
graphic and the "light source" is effectively at infinity.

2 Previous Work
Most Shape from Shading algorithms are based on Horn's formulation, using the Calcu-
lus of Variations [6], which involves minimizing an integral equation by solving the asso-
ciated Euler equations using an iterative method. The integral equation is typically of
the form:

J jE(x,y)-R(p,q))2 + l(p\ + p) + q\ + q2
y) + fi((zx-pf + (zy-qf) dxdy

where X. and p. are scalar multipliers and the subscripts represent partial differentiation.
The first term is the brightness error between the image of the solution surface and the
observed image; the second term is the smoothness (regularization) constraint; and the
final term penalises departure from integrability. Choosing X and JJL is something of a
black art, with poor choices preventing convergence or creating overly smooth results.
Many algorithms first recover surface gradients which are then cast onto the nearest
integrable surface [6][11]. Recently, Horn devised an algorithm that recovers surface
height directly, avoiding the problem of ensuring integrability in the gradient field [1].
Szeliski [9] improved upon the slow convergence rates of Horn's relaxation schemes by
minimising the integral equation directly using conjugate gradient descent [10].
Peleg and Ron [8] obtained faster convergence by using a multiresolution approach.
Their approach requires the construction of a hierarchy of images of the blurred sur-
face, but this cannot be constructed by simply blurring the image itself. They describe
how an approximation to the image of the blurred surface can be obtained, and we use
this technique in our algorithm.

Progress has also been made with local algorithms for SFS, most notably the recent
work of Oliensis and Dupuis [2] which casts SFS as an optimal control problem. Their
algorithm is fast, robust and gives accurate reconstructions, but is unable to cope with
inflections and plateaux in the surface and requires prior knowledge about singular
points (points of zero gradient).

3 Scale Space Shape from Shading
In this section, we first describe the scale space surface representation, and then de-
scribe our SFS algorithm.
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3.1 The scale space surface representation

We define a scale space representation of the surface function z(x,y) as the three-di-
mensional scalar field <b(x,y;a), where a is the scale parameter [3]. The function
®(x,y;ok) (ok > 0) represents the surface at the scale ofe, and we define a function

to be the difference between two successive discrete samples from scale space,
7k) = <b(x,y;ok)-<&(x,y;ak+1). We can now write the surface function at the scale

ofc as the sum:
N

Q>(x,y;ok) = Vt/^t,>>;cr,) + DC
i=k

where OJV is the largest scale in the scale space and DC is a constant which we assume to
be zero, since it represents a constant height offset which cannot be recovered using
SFS. In our algorithm, we generate the functions ty(x,y;oN), i\r(x,y;aN-2), •••> tyfcyioo) m

turn, adding them into the sum until the entire scale space representation has been con-
structed. At each stage, &(x,y;ak) represents the current best estimate for the surface
function.

3.2 Gaussian basis functions
In the continuous two-dimensional case, it has been shown by Koenderinck [3] that the
most suitable basis function for forming a scale space is the gaussian. For a discrete sig-
nal, we write each i|/ function as the sum of M gaussian basis functions, positioned on a
regular grid:

where (xi,yi) are the grid co-ordinates of the centre of the gaussian, and ai is a scalar
coefficient.

The SFS problem now becomes one of finding the coefficients a; for each ty function. As
each -if function is found it is added to the partial solution obtained so far, building up the
description of the surface. Before showing how these coefficients are found, we first
discuss how the scale space representation allows us to obtain smooth solutions.

3.3 Surface smoothness

There may be many different surfaces that can explain a given image, so to find a single
solution we apply the heuristic that the smoothest explanation is the most plausible. We
characterise the "lack of smoothness" of a surface by the integral:

5 = \\p*+pl + q* + q2y dxdy

("2 + v2)2 I ^ ' ^ I 2 dudv

where u and v are the frequency components in the* andy directions respectively andF
is the Fourier transform. The term (u2+v2)2 increases rapidly with frequency, so
smooth surfaces concentrate their energy towards the lower frequencies.

Each surface estimate <&(x,y;ok+i) may be thought of as a low-pass filtered version of
k), so we should achieve a smoother solution if we explain the image as well as
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possible in $(x,y;ok+i) before moving to the next scale and solving for <&(x,y;ok)- We
therefore ensure the solution is smooth by finding the \|r functions in the order
•ty(x,y;aN), ty(x,y;<TN-i),.... ty(x,y;ao), such that the corresponding surface function always
gives a smooth explanation of the image. How we ensure that a smooth surface estimate
is found at each scale is described in the next section.

3.4 Finding surface approximations

In this section we develop the algorithm for finding an approximation for the solution
surface at each scale c%. We first define two related vector spaces: %, based upon surface
functions z(x,y); and ^Q, based upon surface gradients (p,q). We show how the solution
to the approximation problem can be obtained in in ^Q. space and converted back into a
real surface in the space %.

Let ek be the set of M gaussian basis functions at the scale O&, given
bye* = {Gta: 1 < i < M;i e N} where Gki = g-^V+O1-^2)/^ .These span a real vector
space 2>k in the nested vector spaces 2>N CZ 2SN-i £ - £ Z>k C ... C 2>0 (read C as "is a
subspace of"). For each vector space Z>k we define an isomorphic vector space ^Qk,
where a point g = (p,q) in this space is the pair of gradient functions of a corresponding
surface z in Z>^. We define a linear mapping D from 2>k to 90^, where
g = (/>><?) = D(z) - (dz/dx,dz/dy). We obtain a set of basis functions f̂  for SP&k by apply-
ing the mapping D to the basis functions for Z>k> so:

fk JD(ek) , , , ,
= {(-(x-Xiy«x'x?+(y->-))/2ai/oi ,-(y-yiy

((x^+^)/2i/oi )•. 1 < / < M-I e N}
= {(-(x-Xi)Gki/ol ,-(y-ydGkl/a

2
k ): 1 < i < M;i E N}

We find that there is a simple way of mapping points in Z^ to their corresponding points
in ^Qk. and vice-versa. We write a typical surface z in 2->k as the sum:

The point g in 'EPQ.k corresponding to z is given by:

g = (-bi(x-xj)Gkl/Ok
2+-b2(x-X2)Gk2/ak

2 + ... +-bM(x-xM)GkM/Ok
2,

Since D is linear (so D(\Gid) = kD(Gia)), we observe that the coefficients for g are the
same as those for z, iebi =aj, b2 = a2,..., bu^aM- We can therefore map a point from
one space to the other by a simple change of basis functions, keeping the coefficients
unchanged.

We now show how an approximation for the surface function is found at the current
scale ofc. Let the unknown solution to the entire SFS problem be denoted by the point u,
which lies somewhere in the space 2>o- At the scale c% we want to find the point in the
subspace 2Sk closest to u, since this will be the best approximation for u (in a least
squares sense) at that scale. We cannot find this point by working in 2-ik, since we have
no information about surface heights, but if we work in 9>&k we can use gradient infor-
mation from the original image to find a suitable approximation.

We therefore reformulate the problem for solution in <3>Q.^. Let v be the point in ^Qo
corresponding to the required solution u in 2Sn, and let g be a typical point in the space

.̂ Finding g such that ||g-v|| is minimised gives the best approximation for v in
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and hence the best approximation for the solution function u in 2 ^ . Writing g as
, and v as (pv,qv), we define the distance between them as the Euclidean norm:

The distance ||g-v|| cannot be measured directly, since v is unknown. However, we can
measure the brightness error, Q, between the rendered image of g and Ej,, the estimated
image of a surface formed by blurring v. We find £& by blurring the observed image using
the algorithm of Ron and Peleg, described in Section 3.6. It is shown in Appendix B that
by minimising Q we can find the surface approximation of maximum likelihood, given the
estimated image of the blurred surface, £/,. We define the brightness error as:

Since we know R and £/,, we can use an appropriate optimisation technique to find the
set of coefficients for (pg,qg) that minimises Q. Our strategy for finding the next surface
approximation <!?(x,y;crk), given that we have already found &(x,y;ok+i), is therefore as
follows:

1. Apply the mapping D to &(x,y;ok+i), expressing the result in terms of the
basis functions f̂ . This is our initial estimate, s, for the best approximation
to the solution surface in the space 9*^.

2. From the initial estimate, s, find a function As in 9*0.̂  such that Q(s + As)
is a minimum.

3. s + As is expressed in terms of the coefficients a/, G2> •••> aM using the basis
functions fk- The corresponding surface in Z>k is:

<D(x,y;c%) = ahGkl + a2.Gk2 + aj.G« + ... + aM.GkM

The entire surface description is built up by finding each surface approximation
<b(x,y;ak) in turn (for k=N,N-l,... ,1,0), starting from the initial condition <b(x,y;<JN) = 0
(ie the first estimate for the surface is a plane). The final solution surface is the function

In Step 2 of the algorithm there may be more than one As that minimises Q, so we
choose the As that gives the smoothest surface. It is shown in Appendix B that the lack-
of-smoothness measure Sk for the surface <S}(x,y;ok) is bounded above by
Sk ^ Sk+l + CII As |p, where Sk+i is the lack-of-smoothness for the previous surface
<&(x,y;ok+i) and C is a positive constant. Thus the As of smallest length certainly gives a
smooth surface approximation. Since we are sampling scale space densely, the initial
estimate s should be close to a minimum in Q, so little more than gradient descent opti-
misation should be required to find the minimum in Q of smallest As. To be certain of
finding the nearest minimum, the optimisation strategy could be restricted to explore
the region of S'Glk n e a r the initial estimate, but in practice we have found such a restric-
tion unnecessary.

3.5 Minimising the brightness error
Our algorithm minimises the brightness error function Q once at each discrete scale, so
an efficient optimisation scheme is required. Unfortunately, the brightness error func-

t Here subscripts are for notational purposes and do not denote partial differentiation.
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tion is difficult to minimise, since it forms a very large non-linear system. We have
adopted a two stage approach, with a Genetic Algorithm (GA) [4] finding a rough esti-
mate for the solution, followed by refinement by conjugate gradient descent [10]. The GA
converges rapidly and robustly and is able to cope with plateaux and other anomalies in
the objective function, but does not give an accurate solution. Conjugate gradient de-
scent is less robust, but can provide the accuracy required in the final solution, given a
reasonable starting approximation.

The Genetic Algorithm
The Genetic Algorithm (GA) is a search algorithm based upon natural genetics and the
"survival of the fittest" principle of Darwinian evolution. The GA manipulates apool of
candidate solutions, each solution being coded as a bit string, or chromosome. Every iter-
ation, the GA finds the fitter (ie better) chromosomes in the pool and "breeds" them
together using genetic operators to form new chromosomes. These new chromosomes
form a new pool, replacing the old one. Some of the new chromosomes are likely to be
fitter than the ones from which they were derived, so there will be net movement to-
wards a solution. See [4] for a more detailed description.

The GA owes its efficiency and robustness to a careful balance between exploitation
(concentrating effort in promising areas of the search space) and exploration (making
random trial moves in the search space). The GA is most suitable for finding good, but
not optimal, solutions to large scale problems. We use the GA to find an initial estimate
for the solution, and it performs well in this role. This estimate is then refined using
conjugate gradient descent.

Conjugate gradient descent
Conjugate gradient descent is an optimisation technique suitable for solving large, non-
linear systems of equations. It uses derivatives to calculate search directions, with each
new search direction being conjugate to previous search directions - see [10] for a de-
tailed discussion of the algorithm.
In our application, derivatives are easily computed since the brightness error function
can be differentiated analytically with respect to the scalar coefficients. The method
performs well, converging rapidly to a good solution.

3.6 Finding the image of the blurred surface
We use the technique of Peleg and Ron [8] to obtain the approximate image of a blurred
surface. This involves blurring the field -Jp2 + a2 derived from the image using the rela-
tionship Jp2 + q2 = R~l(E(pc,y)). The technique requires a circularly symmetric reflec-
tance function, but we have achieved good results for other reflectance functions, pro-
vided that they do not deviate too greatly from the circularly symmetric model.

4 Experimental results
We show results for four images: two real SEM images, one of a cylindrical fibre and one
of an electron microscope (EM) grid; and two synthetic images of a hemisphere, one
noiseless and one with 10% additive gaussian noise. Each image is 64 by 64 pixels with
256 grey levels. We sampled scale space 32 times. Errors in the recovered height are
shown for the synthetic image results, but not for the SEM images since no ground truth
was available for these.
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The SEM images were taken so that the reflectance function was as symmetrical as
possible. The reflectance function was modelled using the relationship
R(p,q) = w/(n-f), where n is the unit surface normal vector, f is the unit vector in the
illuminant direction, and the albedo m was found by analysing points in the image where
n • I = 1, since at these points m =R(p,q) =E(x,y). The results appear qualitatively cor-
rect for the particular samples used (Figure 1).

SEM image of cylindrical fibre Recovered surface of cylindrical fibre

SEM image of part of an EM grid Recovered surface of EM grid

Figure 1: Recovered surfaces for real SEM images

The synthetic images were shaded using the Lambertian model, R(p,q) = n • f; the re-
sults are shown in Figure 2. Errors are shown in Table 1. The brightness error given is the
mean of the absolute error between the original image and the calculated appearance of
the solution surface, in grey level units. The height error is the mean of the absolute
error between the surface model used to create the synthetic data and the solution sur-
face, using a measuring system where the radius of the hemisphere is 24 units.
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Image of hemisphere (no noise) Recovered surface (no noise)

Image of hemisphere (10% noise) Recovered surface (10% noise)

Figure 2: Recovered surfaces for synthetic images of a hemisphere

Surface Brightness error
Mean sd

Height error
Mean sd

Hemisphere (radius 24 units)
Hemisphere, 10% added noise
SEM image of fibre
SEM image of EM grid

3.54
12.48
0.38
0.32

12.42
20.86
0.94
0.98

0.13
0.93
NA
NA

0.23
0.60
NA
NA

Table 1: Errors in the results

Conclusions
We have demonstrated a novel, robust technique for computing Shape from Shading
that overcomes many of the drawbacks of existing methods. Our experimental results
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show that the algorithm can produce convincing results rapidly for both synthetic and
real images.

The algorithm constructs a scale space [3] representation of the surface using gaussian
basis functions. This choice of representation incorporates the smoothness assumption
in a natural way, and no explicit smoothness constraint is required. Using this represen-
tation, the Shape from Shading problem becomes one of forming a surface from the
basis functions in such a way that the original image is explained. This is done using two
optimisation methods: the Genetic Algorithm [4] and conjugate gradient descent [10].

In future work, we intend to reformulate the problem using a dynamic system
model [ 12]. The surface reconstruction will then be created by solving a coupled pair of
differential equations using standard numerical techniques. This approach will mean
that we no longer need to solve a new initial value problem at each scale, so it should be
much more efficient than our current algorithm. We also intend to incorporate stereo
information into the algorithm in an attempt to improve accuracy and remove some of
the ambiguity inherent in monocular images.
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Appendix A
The "lack of smoothness" integral for the surface estimate <S>(x,y;Sk) (Ofoy.s*) is represented in
9*C!.k by s + As) is given by:

*-!(£)• •(£)'
I OS Oi iS | | 2 I, OS Oi \S | | 2

' ax dx " " ay + av "

V 1 ii d s
 II? II dS ,„ .. 3AS .., ,, 3As ,„ . . , . . . .

Z " ^" +1' ^ H +1' I T H + II17II (tnangle inequality)

xy

aAs

ax " " dy

aAs ||2

a7

N

- JAr+1 + / «; /

1= 1 X^V

—((x—x ) +(v—v") i/^o^

where Gti = e ' ' ** anc | sk+1 is the lack of smoothness of the solution at the previous

scale ok+1. The sum ^ (dG**/axf + (aGfa/^)2
 is a positive constant for all; so we denote this

by C and hence write:

This upper bound on the lack of smoothness means that the nearest local minimum in Q (ie the

local minimum of smallest II As | |) is likely to be the smoothest solution at the current scale.
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Appendix B
Let Eb be the approximate image of the blurred solution surface, created by blurring the observed
image using the algorithm of Ron and Peleg (see Section 3.6). For a typical point g in &%,., we use
Bayes's theorem to write the probability of g given £4 as:

If we assume gaussian noise in the measurement £4, we can obtain:

e(-(Eb-R(pg,qg))2/2s2)

where R is the reflectance function, (pg,qg) = g, and s is the standard deviation of the measurement
noise. We make no prior assumptions so P(g) and P(Ei) are uniform, hence:

2) Eqn. 1

The maximum likelihood (ML) estimate for P(g\Eb) is given by:

gML = argmaxg P{g\Eb)

Taking -fog. of Equation 1, we can write:

gML = argming (Eb-R(pg,qg)f

= argming Q(g)

where Q(g) is the brightness error of the surface g defined in Section 3.4. Our results suggest that
the quality of the approximation Eb is not critical for the success of the algorithm. The error in the
approximation Eb decreases with scale, and our algorithm seems able to recover from any surface
distortion this error causes at larger scales. In fact, reasonable results can even be achieved if no
blurring is done and the original image is used unchanged.
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