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Abstract

We describe a 2D vision module that estimates the motion of moving
objects for the purpose of driving saccadic head/eye motions to fixate them.
Robustness and a fast reaction time are the main requirements of the module.
The apparently moving background is segmented from the moving objects
in the scene using a prediction of the background flow obtained from head
odometry. Subsequently the velocities of the detected objects are determined
using a least-square method to solve the aperture problem. The algorithm
has been implemented at frame rate (25Hz) on a network of five transputers,
and has a latency of approximately 0.06s.

1 Introduction

We are developing a reactive vision system to investigate real-time gaze control. The
mount consists of a 4 degree-of-freedom stereo head (pan, elevation, independent ver-
gence), of which elevation and vergence for one camera are currently implemented.
Given the fast reaction times required of a useful gaze control system, we have
required high quality engineering of the mount to supply the speed and precision
required, with real time control and vision systems. The latter is made up of a
combination of DataCube pipelined image processing boards and Transputers, with
high speed links for communication with the mount. Details of the head design can
be found in [1], the overall structure and aims of the project are described in [2],
and details of the information processing system are given in [3].

This paper describes the implementation of a 2D vision module that will supply
signals to drive saccadic camera motions for the purpose of obtaining fixation on
a moving object. The image motion will be used to compensate for the inevitable
processing and head motion delay by predicting the new position of the object. We
wish to estimate large motions (up to 15 pixels per frame, corresponding to 30° s~!
for the cameras we currently use) for this purpose. Given the inertia of the head
we require motion to be computed with a latency of about 0.1s. Other modules
will maintain fixation on (track) the object of interest, and our initial experiments
with the head will investigate the interaction of these modules in conjunction with
position and velocity head control.

Nelson [4] has described an algorithm designed to solve the background/moving
object segmentation problem (but not the object velocity estimation problem) for the
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translating camera case as well as the case of rotation. Burt and his co-workers [5]
have developed a multi-scale pyramidal motion segmentation algorithm designed
for use in conjunction with control of the sensor and the parameters of the algo-
rithm. Frangois and Bouthemy [6] have designed an algorithm that uses qualitative
information about the camera motion to aid motion segmentation, using a Markov
Random Field (MRF') approach to segment the scene into regions with common
affine flow field.

Our approach differs from the previous work in two main ways: firstly we must
have an algorithm that can recover moving objects at the frame rate of 25Hz and,
just as importantly, a latency below 0.1s. This eliminates iterative minimisation
approaches like the MRF and the pyramidal multi-scale method of Burt. Secondly,
we can take advantage of the precisely known head motion and use quantitative
estimates of head rotation to predict the background motion and hence aid seg-
mentation. Areas in the image not in agreement with the background motion can
be flagged as being due to independent motion. This is only possible with a real-
time gaze control system that allows effectively instantaneous determination of head
odometry for each image, which explains why this method has not been tried before.
On the assumption of zero camera translation and a static background, the image
motion is constrained to be independent of the scene geometry. Because the rotation
axes of the camera do not coincide with the optical centre, there is a small error
which varies inversely with the distance of the object from the camera. The worst
case error for an object at 2 metres distance is negligible for the vergence axis, 0.5
pixels for the elevation axis and 1.5 pixels per frame for the pan axis, undetectable
by the coarse motion algorithm. Indeed it appears not to be necessary to align
elevation and vergences axes precisely with the camera optical centres for the visual
tasks we are concerned with.

We use normal image flow estimates directly for the first stage of the algorithm,
segmenting the background from the moving objects. The normal flow is calculated
from spatial and temporal image derivatives using the motion constraint equation [7].
The flow due to the known camera angular velocity is then “subtracted” from the
normal flow vectors in the sense described in section 3. This yields image regions
whose non-zero residual motion is incompatible with the background. These are
analysed individually on the assumption that their motion can be approximated as
a constant flow. A least-squares method is used to find the best-fitting full flow
vector to the set of normal flow vectors, and also provides a measure of the error
via the RMS residual. Thus the aperture problem is solved within each segmented
region. The algorithm is not designed to segment two moving objects that happen
to appear at adjacent positions in the image. In that case the motion will be flagged
with a large error in the velocity estimate.

We have implemented the algorithm on our head/eye platform at frame rate (25
Hz) with a latency of 0.06s using a network of five transputers plus a transputer
frame-grabber. Details of the real-time implementation can be found in [3].

The following sections 2 to 5 describe the various stages of the algorithm in more
detail. There follow some results on moving imagery and a discussion of the future
development of the project.
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Figure 1: The camera coordinate frame.

2 Calculation of Normal Image Flow

Let the image be E(z,y),  and y being the pixel coordinates. The motion constraint
equation [7] is
%=%—f+u%—§+v%=0, whereu=1z, v=7p (1)

Calculation of the spatial gradients E/dz, 8E /8y and temporal gradient JE /8t
employs gaussian convolution and is described in section 5. The image flow v =
(u v)7T is approximately the projected motion of the moving object, although Verri
and Poggio have shown [8] that equation 1 does not hold exactly, but increases in
accuracy as the spatial image gradients increase. We place a threshold on |[VE| =
\/(BE/B.@)’ + (8E/8y)?, and only use points where the threshold is exceeded.

Equation 1 is the equation of a line in (u,v) space, corresponding to the set of
image flow vectors consistent with equation 1. This constraint line is perpendicular
to VE. The normal flow is defined as the vector vy = (uy vy)T that satisfies
equation 1 and is parallel to VE:

_9E VE
at |VE|?
v, is related to v by the equation v-v, = |v|%.. That we can calculate only the

component of the image flow parallel to the gradient is of course a result of the
aperture problem [9).

(2

Vi =

3 Segmenting the Background

Let us place a coordinate frame at the camera’s optical centre, and assume an ideal
pinhole camera model with z,y,z axes as shown in figure 1, the z axis aligned
with the principal axis of the lens, and the image origin at the point (0,0, —f)7.
This frame is rotating with angular velocity 2 = (2., 9,,.)7, related to the pan,
elevation and vergence angles. This gives rise to motion in the image:

u—(é)—l(zynz“(f2+32)ﬂy“f‘§9=) )
"Ny )T PP+ -y, + f2Q, [°
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Figure 2: The method of nulling the background motion. Its projection onto the
normal flow is subtracted from the normal flow.

We wish to “subtract” the effects of this from the calculated normal flow v, forming
a new normal flow estimate v/, , which will represent the motion of the independent
objects. This is done by subtracting from v, the projection of u onto v,, as
illustrated in figure 2:

v =v. (1_%:‘;7) (4)

In this way we reconstruct the normal flow field that would have arisen if the camera
had not been rotating. Combining equations 2 and 4 allows us to simplify the process
to the following, computing image flow and background compensation in a single
stage:

VE 0E
== .__..(_.... 4

|VE|*" at
Note that the method can be applied whatever the form of the predicted flow u.

The next step is to decide, on the basis of the new normal flow v/, , which image
regions are background and which are not. The simplest method, and the one we use
at present, is to threshold |v/ |, i.e. label residual velocities greater than a certain
value as due to independently moving objects. In future versions of the algorithm
we hope to integrate the results over time to obtain a more robust segmentation.

Lastly, we enforce spatial coherence on the moving objects found. This is done
by searching for small square patches in the image dominated by non-background
flow vectors. The patches are arranged in two sets each of which covers the image as
shown in figure 3. Thus diagonally adjacent patches overlap over a quarter of their
area, while laterally adjacent patches do not overlap. Then, if the total number of
vectors in a patch is nygal, and the number of non-background vectors is npon—back,
we label a patch as non-background if:

!
v, =

u-VE). (5)

1. nyoa1 > T'1, and
2. Nnon-back/Motal > T2

where T'1 and T2 are constant thresholds.

Adjacent non-background patches are then connected on the assumption that
they are part of the same moving object. A region-growing procedure then finds
all distinct sets of mutually connected patches. These are the image regions corre-
sponding to the moving objects.

4 Calculating the Independent Motion

We assume that a moving object will give rise to a spatially constant image flow.
The algorithm will fail to deliver accurate velocity information if:
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Figure 3: The arrangement of the square image patches. One set is drawn in solid
lines, the other dotted.

1. The visible part of the object has a large extent in depth (z).

2. The component of motion perpendicular to the image plane is large.
3. The object is rotating significantly.

4. The velocity of the object is too great (see below).

In these cases the algorithm will only be able to label the regions as moving, without
any specific velocity, essentially flagging a region of non-zero image difference [10].
We do not think that this is a drawback of the method, which is intended as a crude
but robust way of labelling moving regions in an image; complex motions can be
recovered after the moving region is stabilised in the centre of the image. We feel
that robust, real-time algorithms should have simple, specific tasks to perform, and
be able to report when they need help. We have developed a separate module that
detects strong flow divergence [11] which is an “alarm” cue that an object may be on
collision course with the cameras and hence deals with case 2 in the above list. We
use a generalisation of the current method using a linear flow field approximation,
as suggested by Campani and Verri [12] as a good approximation for the flow field
generated by a moving planar surface.

Finding the Full Motion

Given regions of non-background normal flow vectors we wish to find the image
velocities of moving objects. This involves solving the aperture problem, which
until this stage we have been able to avoid. For each labelled moving object we find
a single full flow vector v which is closest, in a least-squares sense, to the constraint
lines generated by the background-compensated normal flow vectors (see equation 5)
making up the object. The distance between the constraint line represented by v/,
and v is (1 — v -V /|v|[*)|¥/|- Thus we minimise the expression

o v-vfi ! '
E(lu o) (6)
i

i=1
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in v = (u,v)” where N is the number of flow vectors and Vv/; is the value of v/ for
the ith point. The result is a pair of simultaneous equations from which u and v
can be obtained as:

_5Sa=SSw _ 55— 5,5
Sg:r B S“Sw : ng an S,,S“

where 5; = L v}, S, = E”’J..'w Szz = DR/ IV, Soy = Evii:viiy/]vﬁ.ip and
Sy = T v, /IV[*. The root-mean-square residual is then

528 ~ 258,55 + 5181
SZ. = 5254

RMS residual = -V/Ij-=v Sey2 +

pixels

where S;,2 = T [V, [2%

5 Implementation

We use a 512 x 256 pixel field of an interlaced frame subsampled to 64 x 32. All
subsequent processing takes place at the coarse resolution. The subsampled images
are smoothed using a gaussian convolution. The temporal image gradient dE /8t is
then simply the difference between the current and previous images, and the spatial
gradients E/8z and GE /3y are calculated by applying the gradient masks [—1 0 1]
and [—1 0 1]7 to the average of the previous and current smoothed images, as in [4].
The parameter and threshold values used were:

1. Standard deviation of gaussian convolution: 1.5 pixels. The larger this value
the larger the velocities that can be measured. This current value gives us
the ability to measure velocities up to about 12 pixels per frame (1.5 x 8).
Larger masks would allow us to measure greater velocities, but at greater
computational cost.

2. Threshold on |VE|: 4 grey levels per pixel.
3. Threshold on residual velocity |v/,|: 0.3 pixels per frame.

4. Segmentation patch size: 8 x 8 pixels. This specifies the smallest size of moving
object that can be located by the method.

5. Threshold on total patch vectors T'1: 20.

6. Proportion threshold on non-background to total vectors ratio 7'2: 0.7. Thus
70% of a patch must be non-background for itself to be labelled as non-
background.

The transputer implementation runs at frame-rate (25Hz) on the even field of each
interlaced image, and the latency (pipeline delay) is 0.06 sec.

6 Results

Initial tests were made using a camera carried on a robot arm. The camera was
rotated about its r-axis by known amounts between frames, while an object, a
white head, was moved to the right. The problem is to recover the motion of the
object in the apparently moving background. The first two frames in the sequence at
512x 512 pixel resolution are shown in figure 4a. They may be fused stereoscopically.
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Figure 4: a) The first two frames of an image sequence. b) The same frames after
subsampling.

b

Figure 5: a) Normal image flow vectors. b) The result of subtracting the background
flow.

When block-averaged and subsampled down to 64 x 64 pixels the result is as shown
in figure 4b. From these the normal flow vectors are calculated. The vectors in
figure 5a found from the images in figure 4b are displayed six times their actual
length to aid visibility.

To predict the background flow in this simple case we use a small field of view
approximation to equation 3, justified since the field of view of the camera is only
20°. The quadratic terms in r and y disappear. ), and . are both zero, so we

have
= 0
u_(fﬂr)

2 is the known z-axis rotation, and f is known to be approximately 25mm. Thus
the predicted flow u is a constant vector (w.r.t. z and y) in the y-direction.

The result of subtracting u from the normal flow vectors is shown in figure 5b.
The background vectors are clearly smaller than those in figure 5a. while those due to
the moving object have remained about the same size. The vectors shown as black
are those that have been labelled as background according to the |v/ | threshold
criterion (page 4). The vectors labelled as part of a moving object are shown white.
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a b
Figure 6: a) The result of segmenting the motion field. b) The least-squares fit to
the constraint lines.

Figure 6a illustrates the flow segmentation and the results of the least-square
velocity fit. Four adjacent square patches were found to be non-background and
these were connected and the least-squares fit method described in section 4 applied
to the non-background (white) normal flow vectors. The long black vector, displayed
at ten times its actual length, is the estimated object velocity, correctly found to
be a sideways motion. In figure 6b are the constraint lines (black for background
vectors, white for object vectors) with the black dot at the best fit velocity. The
ellipse gives an indication of the fit error and the amount of anisotropy in the fit,
given by the ellipse eccentricity. If r is the RMS residual of the least-squares fit then
the major and minor axes of the ellipse are set to er and I, where ¢ is such that
the ellipse takes on the shape of the cross-section through the quadratic sum-of-
squares function in equation 6. Thus the ellipse shows the goodness of fit and how
it changes with orientation in (u, v) space, allowing the common case of the motion
being constrained mainly in one direction (for instance due to a moving straight
edge) to be detected as a large major axis, indicating the lack of constraint in that
direction. The ellipse is magnified 8 times to aid visibility.

Results for the Head/Eye Platform

The second sequence was produced by the real-time transputer implementation.
Shown in figure 7 are 16 frames from a sequence showing two people walking past
each other. There was no camera motion in this case. We used only the even field
of each frame to avoid motion effects of interlacing. The outline of each detected
moving region is shown along with the velocity vector and the error ellipse, both
magnified six times. The sequence shows that the people are initially detected as one
moving region, the nearer person moving to the right dominating the result (frames
1-4), while as they separate the estimated error increases greatly since there is an
equal amount of image data travelling in opposite directions (frames 5-8). At that
point the algorithm separates the two people and the velocities are estimated with
greater subjective precision, i.e. the algorithm “knows” when it has good velocity
data. The real-time implementation allows us to obtain such sequences routinely.
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Figure 7: Results for real-time sequence of two people passing on a pavement next
to the road outside out laboratory.

7 Conclusions

The algorithm we have developed can quite robustly calculate the position, extent
and velocity of isolated moving objects against a stationary background in the pres-
ence of known head rotation, in real time (25Hz) and with short latency (0.06s).
As it stands this will allow us to perform experiments with the head. We need to
analyse the accuracy of the algorithm for different velocities and types of object.
The basic test that the algorithm must pass is to be accurate enough that using the
position and velocity data it provides the head will be able to saccade, fixate on the
object, and start tracking it in a small foveal window. We are currently working on
a Kalman filter-based tracking module that will allow the coherence of the temporal
image to be made explicit, and to determine the trajectory of moving objects. With
this module we wish to maintain an updateable memory of the moving objects in
the scene, so that while tracking one object knowledge is retained of others, enabling
change of attention if an another object becomes more “interesting” according to
the size, velocity, persistence, etc. of the object. We have also extended the method
to deal with more general types of object motion. For instance, an object moving
towards the cameras gives rise to a strongly divergent flow field. This divergence
can be used as an “alarm” signal that the object is about to hit the camera. The
time-to-contact can be determined from the divergence (see [13]). Using a linear
flow approximation [12] enables us to calculate the flow divergence. This work will
be reported in future pulications.

This algorithm should be seen in context as a single module of a complex vision
system, much of which will be bootstrapped from the results of this module. As
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such, robustness has been of greatest importance, and given higher priority than
the ability to deal with complex scenes. The important outcome in the context of
a real-time gaze control system is not the “perfection” of the flow vectors, but the
number of correct actions that the module gives rise to.
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