
A Comparative Analysis of Algorithms
for Determining the Peak Position of a

Stripe to Sub-pixel Accuracy

D.K.Naidu
R.B.Fisher

Department of Artificial Intelligence, University of Edinburgh
5 Forrest Hill, Edinburgh EH1 2QL, UK.

Abstract

This paper provides a comparative analysis of five algorithms for de-
termining the peak position in a laser ranging system to sub-pixel accu-
racy. The exercise was carried out in order to determine the most suitable
method in terms of accuracy and robustness, for determining the location
of the peak of an observed laser stripe to sub-pixel resolution.

1 Introduction

This paper describes a comparative analysis of the efficacy of five algorithms
in determining the peak position of a laser stripe to sub-pixel accuracy. It
is necessary in many applications to make detailed measurements which are
outwith the scope of a system which relies on locational accuracy to the near-
est pixel. It is, therefore, worthwhile to use algorithms that estimate feature
positions to sub-pixel accuracy by interpolating the sensor response function
(e.g.fl], [2]). In an imaging system which relies on accuracies to the nearest
pixel while translating from 2-D camera coordinates to 3-D world coordinates,
the accuracy of determination of the 3-D coordinates of a point in space will
be limited by the resolution of the image from the camera. In our range sensor
(working volume 20cm on a side), each pixel images about lmm of the scene.
In order to determine the stripe to sub-pixel accuracy, the image of the stripe
must be blurred. This is almost always the case because although it is possible
optically to focus the stripe to less than a single pixel width, the operative
response of individual sensor elements often leads to a measurement that is
several pixels wide.

The y-coordinate of the observed pixel is determined by the vertical distance
of the scan line from the top of the image. The x-coordinate is determined by
the location of the pixel across a particular scan line. Therefore, when we refer
to the sub-pixel position of the peak of the stripe, we are discussing the x-
coordinate of the pixel. Because of triangulation calculation, greater accuracy
in determination of peak position in 2D will automatically result in a more
accurate determination of the location of the peak in 3D coordinates.
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2 Description of Algorithms
In all algorithms discussed below, the calculations use intensity values that
have had the background intensity subtracted.

2.1 Gaussian approximation
The computation uses the three highest, contiguous intensity values around
the observed peak of the stripe and assumes that the observed peak shape
fits a Gaussian profile. This assumption is superficially reasonable as the lignt
incident on the sensor is known to be nearly Gaussian distributed and the pixels
have an overlapping, nearly Gaussian response. However, because each pixel
integrates light over its field of view and because the physical sensor pads of
the solid-state cameras we use have a gap between them, the distribution will
not be exactly Gaussian. None the less, while we do not know the exact form
of the distribution, we assume that the composition of all these effects can be
modelled by a Gaussian distribution. If a, b and c are the intensity values
observed at pixel positions x — 1, x and x + 1 with b having the highest value,
then the sub-pixel location (X) of the peak is given by :

= x - - (
2 U

In ( c ) - I n (a)

where x is the ^-coordinate of the centre of the pixel with intensity value b. As
a, b and c are integers in the range 0-255, the log calculation can be performed
by table lookup.

2.2 Centre of Mass
The centre-of-mass(CoM3) algorithm also assumes that the spread of intensity
values across the stripe conforms to a Gaussian distribution. Thus, the location
of the peak can be computed by a simple weighted-average method. Suppose
again that the three highest intensity values are given by a, b and c. Also
suppose the x-coordinate of b is x, then the sub-pixel location of the peak is
given by :

- a(x - l) + bx + c{x + 1) - - ' .
X = = x +a+b+c a+b+c

The extension of the algorithm for 5 and 7 points(called CoM5 and CoM7)
is obvious. Algorithms to use all points along the raster scan[3] also exist.

2.3 Linear Interpolation

This method assumes that a simple, linear relationship defines the spread of
intensity values across the stripe. Thus, if the three highest intensity values
are identified as before, then :
If c > a, X = x - i ^ e l s e , X = x - ^

2.4 Parabolic Estimator
A continuous version of the peak finder is derivable from the Taylor series
expansion of the signal intensity near the peak. If the peak is at f(x + 6) and
we observe the signal at f(x), then we have:

f'(x + S) = 0 = fix) + Sj"(x) + O(S2)
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Neglecting the higher order terms, and estimating the derivatives discretely :

5 - 1

f"(x)
This estimator is also that found by fitting a parabolic function to the points
f(x — 1), f(x) and f(x+l). In the experiments below, we call this the parabol ic
estimator.

2.5 Blais and Rioux Detectors
Blais and Rioux[4] introduced fourth and eighth order linear filters:

3i(x) = f

to which we also add a second order filter:

These operators act like a form of numerical derivative operator. The peak
position is estimated as above by:

5 =

Their results showed that the 4th order operator had better performance
than the 8th order operator over the stripe widths that we are interested in
here, so we only analyze it (called BR4 below) and the simplified 2 n d order
operator (called BR2 below). The 8 t h order operator has better performance
for stripe widths with gaussian width parameter larger than 2.

3 Maximum Error of Estimators
Assuming that the observed stripe has Gaussian form and the true peak po-
sition is near to an observed pixel, we determine the relationship between the
estimated and true peak positions (ie. offsets from that pixel), for each of the
peak detectors. Assume that the continuous stripe is modeled by:

(»-f)3

f(n) = e 2T 2

where — ̂  < 6 < ^ is the true peak position and / is sampled at n =
—2,-1 ,0 ,1 ,2 , . . . . We ignore the problems of pixels integrating their inputs
over their spatial extent, as well as any shaping functions the camera and dig-
itizer may apply.

We might ask what is the maximum deviation | 6 — 8 \ over the range
— | < 6 < | for each estimator. We generated sampled stripes for values of

6 over this interval and calculated the estimated 6. Figure l(left) shows the
error versus S for the CoM7 estimator for cr — 1.0. By weighting the estimator
(8' — aestimator6) we can, for a given a, reduce the maximum error by spreading
the error across the full range. Figure 1 (right) shows the error for the resulting
CoM7 estimator when a — 1.006. When using the modified estimators, we
can reduce the maximum errors to (using an a chosen to maximally reduce the
error when a — 1.0):
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Figure 1: Error vs 6 For Unbiased (left) and Biased (right) C0M7 Estimator

a

0.5
1.0
1.5
a

Gaussian
0.0
0.0
0.0
1.0

CoM3
0.380
0.005
0.239
1.85

CoM5
0.041
0.002
0.150
1.093

CoM7
0.021
0.000
0.057
1.006

Linear
0.103
0.030
0.049
0.93

Parabolic
0.156
0.029
0.034
1.08

BR2
0.026
0.024
0.022
0.95

BR4
0.023
0.013
0.011
0.975

This shows that, in at least the case of a = 1.0, we can tune the estimator
to have a very low error; however, setting the a values for one <x may produce
reduced performance at other as.

4 Non-Linearity of Estimators
Using the Gaussian stripe model in Section 3, we can determine an analytic
model of the estimated peak offset 6 for a small, real offset, S. Our analysis
assumes first-order approximations, so:

We can now determine the form of 6 for each peak estimator:

Estimator

Gaussian

Linear

Parabolic

BR2

Local Estimate

6

6 e~~&

"a(l-e-a±»)
S e ~ i ^

26 e~&

Estimator

CoM3

CoM5

CoM7

BR4

Local Estimate
26 e~&

"2 (l+2e~a2*)
26 e~i^T+4e"i^

26 e 2^+4e 2^+9e i^5

" (l+2e~275+2e"2^+2e"2?5)

26 e~^ +2e~2^

The Gaussian estimator has the ideal form for small 6. From these results,
we see that the parabolic operator gives one half the results of the linear op-
erator. However, in light of the results from Section 3, we use the a estimator
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bias to change the linearity according to the algorithm. When a = 1.0 (as
approximately in our case), the resulting 5 is:

Estimator
5

Gauss
1.005

CoM3
1.015

CoM5
1.05

CoM7
1.05

Linear
1.405

Parabolic
0.835

BR2
1.335

BR4
1.175

Hence, only the Linear and BR2 estimators are reasonably non-linear. Over-
all, this noise-free theoretical and empirical analysis suggests that the Linear,
and BR2 estimators are not particularly good. However, given typical sensor
substructure, pixel spatial integration and cross-talk, non-gaussian stripe for-
mation and non-linear sensor transfer functions, errors of less than 5% seem
unlikely in any case. Hence, the Gauss, CoM5, CoM7, Parabolic and BR4
estimators still seem like good candidates.

5 Errors in the Presence of Noise

In line with the experiments of Blais and Rioux[4], we investigated how error in
the stripe data affected the estimated stripe position. These experiments were
conducted by generating synthetic stripe data with a known, but randomly
chosen stripe offset about an exact pixel position, and then corrupting the
observed stripe intensity with noise. The main controlled variable was the stripe
width. Uniform noise was added (following the model of Blais and Rioux).
Point measurements were generated by:

s(m, x, <r,f3) = e

where:

+ /?n

x € U[—0.5, +0.5] is the stripe position.
m G {—3, —2, —1, 0,1, 2, 3} are the measured pixel positions.
n G U[0,1] is the noise variable.
a is the stripe width parameter (range 0.8 to 1.8).
P was the magnitude of the noise, and was considered for

/? = 0.0, 0.1, 0.25, which bounded our observed noise level.

We measured both RMS error (\/j? J2(xi -*i)2) a nd maximum deviation
xi - £i |) as a function of a for N = 10,000 samples. Figure 2 shows the

RMS error for /? = 0.1. Immediately, we see that the CoM3 and CoM5 estima-
tors are problematic. What is surprising is the error of the CoM7 estimator at
low stripe widths. However, this is understandable as, when the stripe width
is low, the stripe intensities fall quickly at non-central pixels, causing the noise
to more quickly dominate the signal and have a greater effect.

To compare the algorithms, we also summed the RMS error for a = 0.8 — 1.8
(by 0.05) for the three values of/?.

0
0.00
0.10
0.25

Gaussian
0.00
1.07
2.49

CoM3
3.71
3.90
4.25

CoM5
1.36
1.86
2.67

CoM7
0.31
1.32
2.63

Linear
0.87
1.36
2.62

Parabolic
0.49
1.23
2.61

BR2
0.39
0.93
2.12

BR4
0.24
0.77
1.86
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Figure 2: RMS Error Versus IT For The Estimators, Noise = 0.1

6 Empirical Testing

The experiments used three different test objects. These were a cube, a trape-
zoid with its top surface at an angle of 10° to the horizontal, and an equilateral
prism (see Figure 3) to test the effect of surface orientation on peak location.
In all cases, the object was oriented so that all range values along the stripe
were equal. The experiments obtained a series of range images comprising 100

Figure 3: Detail of experimental objects

range stripes each. A single data point was chosen from each stripe, such that
all the data points chosen lay along a line parallel to the x-axis. Secondly, the
stripes were taken with a very small micro-stepper step size (0.2mm for the
prism and 0.3mm for trapezoid and the cube), thereby leading to high data
density. Also, the depth resolution was kept high (0.03mm), so that the errors
being measured would be of larger magnitude than the quantisation errors.

With each of the surfaces, each algorithm was used to detect the peak,
and then the depth calculated from each camera was noted and their average
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computed. In the case of the trapezoid and the prism, the direction of the
slope was alternated to eliminate the effect of the image of the stripe creeping
across from one pixel to the next on the imaging surface of the cameras. The
experiments with the prism were performed with the normal of the prism in the
x — z plane. A linear least-squares fit was computed for each set of data points.
The slope of this fitted line (z = a + bx) was computed, and the minimum and
maximum values of the errors from the fitted line were recorded. The variance
of the errors was also computed. The comparative statistics are shown below.

Surface

Flat Surface

Surface

10° slope,
left to right

10° slope,
right to left

Algorithm
Gaussian

CoM - 3 pt
CoM - 5 pt
CoM - 7 pt

Linear
Parabolic
BR - 2nd
BR - 4th

Algorithm
Gaussian

CoM - 3 pt
CoM - 5 pt
CoM - 7 pt

Linear
Parabolic
BR - 2nd
BR - 4th
Gaussian

CoM - 3 pt
CoM - 5 pt
CoM - 7 pt

Linear
Parabolic
BR - 2nd
BR - 4th

Surface

60° slope,
left to right

60° slope,
right to left

Algorithm
Gaussian

CoM - 3 pt
CoM - 5 pt
CoM - 7 pt

Linear
Parabolic
BR - 2nd
BR - 4th
Gaussian

CoM - 3 pt
CoM - 5 pt
CoM - 7 pt

Linear
Parabolic
BR - 2nd
BR - 4th

a
49.7680
49.6466
49.7025
49.6239
49.7878
49.7397
49.6804
49.6808

a
57.2598
57.7386
57.6771
57.6287
57.6665
57.7211
57.8916
57.8261
51.3929
51.8246
51.7356
51.6648
51.7305
51.7699
50.9346
50.9251

a
70.2352
70.3217
70.3418
70.1715
70.2851
70.3154
70.1493
70.1202
23.5725
23.5071
23.5518
23.3997
23.5029
23.5249
23.5494
23.5244

b
0.000112
0.000006
0.000130
0.000036
0.000090
0.000297

-0.000171
-0.000411

Error(mm)
Min.

-0.12762
-0.06152
-0.10121
-0.09555
-0.07676
-0.14026
-0.21498
-0.13912

Max.
0.09815
0.08812
0.09972
0.09658
0.08499
0.14496
0.11769
0.16080

Variance
0.00249
0.00122
0.00156
0.00156
0.00120
0.00271
0.00323
0.00343

b
-0.05306
-0.05443
-0.05466
-0.05478
-0.05391
-0.05436
-0.05389
-0.05382
0.05424
0.05257
0.05321
0.05277
0.05263
0.05281
0.05460
0.05439

b
-0.34806
-0.34726
-0.34816
-0.34771
-0.34810
-0.34841
-0.34781
-0.34813
0.34834
0.34925
0.34852
0.34865
0.34894
0.34873
0.34841
0.34870

Error(mm)
Min.

-0.24558
-0.45631
-0.37467
-0.29864
-0.30376
-0.23738
-0.27106
-0.28686
-0.31441
-0.43193
-0.34414
-0.32581
-0.35943
-0.35278
-0.33865
-0.30189

Max.
0.38329
0.56070
0.31389
0.34434
0.31999
0.37868
0.28737
0.33492
0.51424
0.47276
0.41777
0.42064
0.40299
0.41456
0.48187
0.47461

Variance
0.02463
0.05423
0.03110
0.02416
0.01737
0.01899
0.01836
0.02110
0.03381
0.04573
0.03457
0.03128
0.03645
0.03496
0.03299
0.03184

Error(mm)
Min.

-0.43505
-0.42918
-0.37187
-0.39819
-0.43443
-0.39460
-0.46431
-0.47256
-0.34344
-0.33353
-0.31148
-0.40910
-0.38680
-0.39773
-0.31710
-0.34116

Max.
0.45969
0.51835
0.55610
0.51866
0.42978
0.50010
0.51234
0.47195
0.44277
0.41938
0.35788
0.48459
0.47643
0.44770
0.46174
0.52795

Variance
0.04737
0.05024
0.04146
0.04106
0.04897
0.04764
0.05624
0.04401
0.03918
0.03397
0.03213
0.03624
0.03994
0.03675
0.03628
0.02985

The measured values for a are not particularly relevant. The values of b are
of interest, because they specify the slope of the surface as measured by the
algorithms used. The true value of b is 0 in the case of the cube, ±0.0538 in the
case of the trapezoid, and ±0.3464 for the prism. These values were derived by
careful, physical measurements of the objects, but are still subject to the usual
measurement errors.
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Figure 4 shows the variation of the residuals from the line of best fit applied
to the measured data. The plots have each been offset by a different amount so
that they are appear together on one graph. The maximum absolute variation
of the plots from the line of best fit is about 0.5mm. Note the periodic structure
of the residuals resulting from aliasing between the pixel spacing, inter-pixel
gaps and the stripe width.

Gaussian
CoM3
CoM5
CoM7
Linear

Parabolic
BR2
BR4

0 20 40 60 80 100
Position across measured surface

Figure 4: Comparative depth profiles across a 10°, right-to-left slope

The results from the trapezoid clearly show systematic errors in the system,
caused by the image of the peak creeping from one pixel to the next, across
the inter-pixel gap. The performance with the prism is even worse. This is
because the acute angle of the object, which is very close to the angle of the
camera axis to the horizontal, causes the stripe to move across the imaging
sensors more quickly. In effect, the cameras are virtually sighting along the
slope of the prism. The Gaussian and BR4 algorithms appear to show the least
amount of perturbation. We estimate the inter-pixel gap to be almost as wide
as a pixel.

7 Conclusions
The empirical results show that the CoM3 algorithm has poor performance.
The other methods display performance within the same range probably be-
cause of factors such as sensor structure, inter-pixel gaps, cross-talk, and inte-
gration of the sensor response over the width of the pixel. The Linear and BR2
methods have been shown to possess high non-linearity (Section 4). When we
consider the errors produced, the sum of the RMS errors are highest for the
CoM3 and CoM5 algorithms. They are joined by the Parabolic algorithms
when we consider the maximum errors. This leaves us with only the Gaussian,
CoM7 and BR4 algorithms as suitable candidates.

The aliasing gives a periodic structure to the estimators. This could be
estimated and an appropriate model used to correct for the effects. In the
case of algorithms like the CoM7 and BR4, which rely on a large number of
points around the peak, we notice that specular reflections and transparency
may cause problems since the outlying pixels have a substantial effect on the
computation of the location of the peak. Also, in the case where the object has
holes in it, causing internal reflections and mutual illumination, the weighted
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average method of the CoM algorithms will deliver a skewed estimate of the
peak position.

We can see good performance over a range of a and j3 for the BR4 estimator.
This is also clear in Figure 2; however, the Gaussian estimator has obvious
benefits as the noise level or stripe width decreases. It is also interesting that
the figures show to what extent the choice of estimator is linked to the specific
stripe width and noise level. For our striper, the noise seems to be about 2-3
quanta, or about 1-5% of the peak intensity.

When comparing the speeds of the algorithms, The Gaussian is the slowest
by about a factor of 2 over the Linear algorithm. However, the peak detection
sub-process takes up only a small percentage of the total range image acquisi-
tion and peak detection time, so the speed of the algorithms is not a factor in
their comparison.

These results apply to digitised video signals, whereas some algorithms,
namely the centre-of-mass algorithm, can be applied directly to the video
signal[2], [3]. An alternative approach to producing real-time stripe detec-
tion and sub-pixel location is to scan for the peak as the digitized intensity
is calculated. Both approaches have been implemented in hardware and thus
remove computational expense as a consideration, because one has to wait for
the complete video scan anyway, when using standard video equipment.
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