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We investigate the use of Robust Estimation in an ap-
plication requiring the accurate location of the cenires of
circular objects in an image. A common approach used
throughout computer vision for eztracting shape infor-
mation from a data set is to fit a feature model using
the Least Squares method. The well known sensitivity
of this method to outliers is traditionally accommodated
by outlier rejection methods. These usually consist of
heuristic applications of model templates or data trim-
ming. Robust Estimation offers a theoretical framework
for assessing such rejection schemes, and more impor-
tantly, provides an approach to parameter estimation in
contaminated data distributions capable of greater accu-
racy.

Introduction

The detection and localisation of parametric shapes in
edge maps is an important problem in computer vision
and image analysis. It is difficult because edge maps
contain a profusion of multiple structures and many con-
taminating features (see Figure 2). A common approach
in such situations is to apply the Hough Transform (HT)
method [1]. The HT detects structures by finding max-
ima in a parameter space defining particular instances of
the structures. It copes well with multiple instances and
contaminating feature points because the value of HT at
a particular parameter is the number of points lying in
a finite width template which surrounds the parametric
curve. Hence the local peaks in the HT are not influenced
by feature points which are far from the curve. This can
be contrasted with a conventional least-squares method
which attempts to minimise an error metric in which
the values at a particular parameter value are influenced
by all feature points. In typical estimation problems,
straightforward least-squares is not particularly useful.

The performance of least-squares methods can be im-
proved by changing the error metric so that points which
lie far from the curve do not influence the final value -
that is reject outliers. In this form the least-squares can
be thought of as a method, like the HT, in which the
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value of the metric is a weighted sum of points falling
inside a template which surrounds the curve. The tem-
plate function though is quadratic rather than binary like
the HT. In fact there are a whole class of methods which
have been developed within the field of Robust Estima-
tion, known as Generalised Maximum Likelihood (GML)
methods, which can be thought of in this way. Meth-
ods which use finite, template like functions are known
as redescending methods. As the template function is
continuous, there are two important differences between
redescending GML methods and the HT. Firstly, their
properties such as accuracy and sensitivity to contam-
inations are well understood [2]. Secondly, continuity
means that iterative methods can be employed to accu-
rately identify extrema. This last property is particularly
useful in problems with a large number of parameters.
The above merits of Robust Estimation have not been
generally exploited in computer vision applications [3].

In this paper we investigate the problem of circle cen-
tre estimation [4] using robust, redescending estimators.
The problem is motivated by the task of accurately lo-
cating partial circular objects in low signal to noise ratio
images. A HT is used to locate initial starting points
for an iterative method which minimises an error metric
defined by a redescending kernel. The iterative method
solves a set of equations, which are obtained by takiug
the derivative of the error metric with respect to each of
the unknown parameters, using a weighted least-squares
formulation. One of the difficulties in using a fixed width
template is that different SNR’s will yield different edge
point deviations around the ideal circular curve and as
a result the performance of the method will differ. To
avoid this problem we use a robust method to find an es-
timate of the standard deviation of edge points and use
this estimate to iteratively define an appropriate kernel
width. The inclusion of this scale estimation improves
performance significantly in low SNR images.

Circle Finding
The application considered in this paper is the accu-

rate, sub-pixel determination of the centre of partially
occluded circular objects, see Figure 2. In a practical
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image processing system, this problem is complicated by
many factors associated with non-ideal imaging condi-
tions. However, in this paper the problem is simplified
by the use of synthetic data in order to gain a lower limit
on the measurement accuracy attainable under “well un-
derstood” imaging conditions. The emphasis of the cur-
rent work is to characterise the performance of different
estimation procedures.

Image segmentation is often achieved by edge detection.
However this is error prone and leads to the identifica-
tion of non-boundary edge points throughout the image
as well as imprecisely locating genuine boundary edge
points. Figure 2 illustrates edge detection applied to a
synthetic image of a single circular object. The differ-
ence between object and background gray levels was 100
and the image was corrupted by the addition of Gaussian
distributed noise to each pixel.

In estimating the centre of a circular shape by apply-
ing a least squares fitting procedure, there is an implicit
assumption that all the data considered must be Gaus-
sianly distributed about the circular locus. However it
can be seen in Figure 2 that not only is the circle contam-
inated by outliers across the image but there may also be
other more structured distributions present i.e. the flat
side of the object. Before applying a least squares proce-
dure to such data these unwanted distributions must be
removed. If initial estimates of the circle parameters are
available then templates can be used to reject unwanted
edge points. Wallace has implemented this technique
using the Hough transform [6] to provide coarse initial
estimates of circle parameters. The Hough Transform is
a robust method for parameter estimation in noise but
its accuracy depends on the quantization of the voting
array and the accuracy of the edge information. Wal-
lace detects candidate circles by finding peaks in a 3D
Hough Transform space characterised by the parameters
(a,b,r), where (a,b) is the circle centre and r is the circle
radius. Points associated with each circle are isolated by
defining a finite width binary template around the esti-
mated parameters. Points that fall within the template
are used for Least Squares fitting i.e. the template per-
forms outlier rejection. However, for the method to work
effectively the template width must be chosen carefully.
Too small a template may cause valid points to be missed
while too large a template will introduce outliers. The
Least Squares fitting procedure is adversely affected by
both of these effects.

Robust Estimation

As in the case of the Least Squared Error method, Ro-
bust Estimation methods require the minimization of an
error criterion. This function K is composed of terms

from each of the n data points. It is given by

N

K=Y plen) (1)

n=1

where p(en) is a function defining the effect of errors.
The error term is a function of the n'* data point x, =
(£n,¥n) and a = (ap,ay, ..,a;,..) the parameters of the
model function that is being fitted i.e.

€n = f(xll: Yn,a) (2]

In our circle estimation application the parameter vector
is a = (a,b,r). The minimum of equation 1 will occur
at the position a which is the best model fit to the data.
This minimum is found by setting the partial derivatives
of K with respect to each model parameter a; to zero

N

de,,
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where ¢(en) = 9p(en)/den 1s known as the Influence
Function (IF). Solutions of this set of equations give pos-
sible values for a.

In the least squares (or mean) formulation p(e,) = €?
and, consequently the influence function is given by
¢(en) = dp(en)/den = 2e,. This function, illustrated in
Figure 3, assigns high weights to outliers and accounts
for the sensitivity of the Least Square’s method to noise.
There is much statistical literature relating to the use of
alternative IF’s which are less sensitive or more robust
in the presence of outliers. Examples, which are illus-
trated in Figure 3, include the skipped mean, the skipped

median and the Tukey Bi-weight I1F’s.

It should be noted that a single application of the skipped
mean to the data set is the same as the Least Squares
fitting method with the use of a binary template. The
cut-off parameter T plays the same role as the choice of
template width. However, assuming a Gaussian distri-
bution with small levels of contamination, choice of the
cut off point can be based on results from the robust
Estimation literature. The least sensitive i.e. most ro-
bust estimator, of scale, s, or spread of a contaminated
Gaussian distribution is the Median Absolute Deviation
(MAD) estimator [2], viz

s = 1.4826median(le,|) ; Vn (4)

The factor of 1.4826 is the ratio of the standard deviation
to the median of absolute deviations from the mean of
an uncontaminated Gaussian distribution. Having esti-
mated the scale of the data distribution all measurements
and their errors can be suitably adjusted.

K=Y pleals) (5)

A consequence of this is that the value of 7 need only
be expressed as a multiple of the scale. In this way the



fraction of data points within the fit can be set with
reference to a Gaussian distribution i.e. to accept 98%
of all good points set the cut-off or template width to
=3,

The Circle Finding Problem

In this section we formulate the circle finding problem
in terms of Robust Estimation. We consider a two stage
method in which the first stage is a Hough based estimate
of parameters. The second stage involves an iterative
refinement of this estimate by solving equation 3. The
error function in equation 2 for a point (2, y, ) is defined
as

n = 6)2 R

en = (2n —a)’ +(y

(6)

This can be shown to be approximately equivalent to
€, = 2rér, where ér, is the perpendicular distance be-
tween the data point (z,, y») and the circle locus defined
by the estimate (a, b, 7). In order to simplify the solution
of equation 3, equation 2 is rewritten as

en = 2azy + 2by, + 2¢ — 22z, (7)

where ¢ = (r? — a® — b?)/2 and 2, = (22 + y?2)/2. The
solution vector (a, b, ¢) is found by solving the following
equations, derived from equation 3

OK de,
30’. _n=1 aa ¢(eﬂ/“’]_0 (8)
B . S i o (9)
b~ 2 el =
N
oK Ben
i ¢("-’n/5J =0 (10)
< n=1
where
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The above equations can be solved using the iterative
Weighted Least Squares formulation. At the " it-
eration, an influence weight for each point is defined
as wy, = ¢(eni—1/5i)/(€ni-1/8i). e€ni_1 is the error
between the n'"* point and the parameter estimate at
thiteration. Equations 8, 9 and 10 can then be expressed

as
N

Z xnwn(aixn + biyn + i zﬂ) =0

n=1

Zynwn(a.'xn+beyn+ca'—zn)=0 (12)

N
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The intermediate parameter vector p; = (a;,bi,¢;) at
each iteration can be computed by rearranging equation
12 into the matrix form below and finding the inverse.

Aipi = b, (13)
zjjlll\lr Wn T 2 Z);V wnxrlyu Zg Wyly
Ai = Ek WnTnln Zk Wp yn Zk’ Wy ln
WpTn 1 Wnln 1 Wy
Zg:l WpInin
bi = ZnN=1 WnYnin
Zn:l Wnin

Finally, the circle pa:rameters (a,b r) can then be recov-
ered using the conversion #? = 2¢ + a? + b?.

The Iteration Scheme

An iterative scheme is used to minimise the error metric
of equation 5. The estimate of a prior iteration is used
to recompute the weights of each data point. The initial
estimate pg is found via equation 7 from the circle pa-
rameters (a, b, r) recovered by the first Hough Transform
stage. Thus, the basic iterative cycle of the second stage
can be described by the following steps.

1. Compute Scale : Compute the scale s; from

equation 4.

2. Compute Weights : For each data point
(Tn,yn) the weight w, is found from w, =

d(eni=1/8i)/(eni-1/5:).

3. Compute Matrices : Construct the matrices A;

and b;.

4. Find Solution : Find p; by inverting matrix A;.

5. Compute Error Metric : Compute equation 5

6. Check for Termination : Terminate algorithm

or repeat above steps.

As the iteration scheme progresses, I should converge to
its minimum value K,,;,,. Termination follows when I
has been judged to have converged to K ,;,. ' may only
decrease and termination occurs when the decrease in I’
becomes small z2.e. when K; > «K;_; where a = 0.999.

At each iteration the scale of the data points is com-
puted. The correct estimation of scale is important as
it determines the width of the influence functions and



therefore outlier rejection. Unfortunately the robust
MAD scale estimator is still sensitive to large numbers
of outliers. It is therefore necessary to base scale estima-
tion on a ‘trimmed’ sample of data points. This can be
reliably achieved by using a trimmed median Influence
Function with a fairly large cut-off so that all true data
points are contained within it, but most outlying data
points are excluded. Since e, =~ 2r;ér,, the cut-off is
chosen as 7 = 2r;7, where 7, is set at some value be-
tween 8 and 15 pixels. For the data presented here the
result is insensitive to the choice of 7.

Experimental Results

In this section results are presented for the performance
of the iterative robust estimation method and the more
heuristic non-iterative Least Squares method of Wallace,
which uses a fixed size template. Synthetic data pro-
vides a quantitative comparison of the best achievable
accuracy as a function of additive Gaussian gray level
noise. The algorithms are then applied to a real data
image to illustrate the benefit of using the robust esti-
mation procedure.

All experiments with the robust method used the
smoothly redescending Tukey Bi-weight Influence Func-
tion. For the method of Wallace a fixed template width
of +£3.5 pixels was adopted. The edge map of the syn-
thetic data used is shown in Figure 2. The original im-
age contained a circle of radius 90 pixels with 20% of
its boundary replaced by a linear segment. The image
size is 256 x 256 pixels. Figure 4 compares the location
accuracy of the first stage Hough Transform, the Least
Squares algorithm and the Robust Estimation estimator
as a function of the standard deviation of Gaussian noise
added to each pixel. As the noise increases so does the
positional inaccuracy of each pixel as well as the number
of spurious points detected by the edge segmentation.
Therefore, it is expected that the accuracy of circle pa-
rameters should decrease. Each data point is the result
of 300 trials during which the orientation of the deformed
circle and sub-pixel centre position were varied. The ver-
tical axis plots the error between estimated and actual
centre positions. Curves are drawn such that 98% of
all the measured values deviate from the true centre by
less than the plotted values. It can be seen that the
Hough Transform cannot reliably achieve sub-pixel ac-
curacy. The Least Squares method performs well for low
noise levels but breaks down for moderate levels of noise.
The Robust Estimation method extends the range of tol-
erable noise for which sub-pixel accuracy is attainable to
twice that of the Least Square method. This improve-
ment is gained at the computational expense of iterating
the estimation scheme. Table 1 shows the average num-
ber of iterations for each noise level. However the rate
determining step of the total algorithm is the first stage
Hough Transform which takes about 100 times the time
of the Least Squares method.
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Some of the advantages of the Robust Estimation
method over the Least Square method are illustrated
with respect to real data in Figure 5. This shows the
edge map of a complicated scene containing two man-
made objects. The problem is to accurately estimate
the parameters of the large circular arc which is part
of the outer boundary of the object on the right. The
algorithms are manually given an initial estimate, and
the results are shown by overlaying on the edge map the
circle corresponding to the finally estimated parameters.
Figure 5(a) illustrates the result of giving an accurate
initial estimate to the Least Squares with a template of
width 16 pixels. The result is corrupted by other data
structures in this wide template. This effect is reduced
using a smaller template. Figure 5(b) presents the result
produced by the Robust method for the same initial esti-
mate. After several iterations it converges to the correct
arc parameters.

Figures 5(c) and (d) shows the effect of introducing inac-
curacy into the initial estimate of circle parameters. In
this example the initial estimate is out by two pixels in
each of the three parameters. The Least Squares (c) is
even more distorted by the surrounding structure than
previously. Reducing the template width can result in
complete failure to find any sensible solution. For the
same inaccuracy, Figure 5(d) shows that the Robust Es-
timation scheme (which calculates its own scale estimate)
manages to lock onto the correct parameters.

[ Number of Iterations ]
Noise Levels
o 0.0 12.5 25.0 37.5 50.0
| No. Iterations l 7 10 15 16 18 I

Figure 1: Number of Iterations to Convergence

Conclusions

We have outlined the relationship between a general class
of robust estimation techniques and the heuristic outlier
rejection methods which have been applied to the stan-
dard Least Squares. Robust statistics provides a frame-
work for analysing the properties of these methods. An
algorithm which applies a robust estimation technique
to the problem of circle parameter estimation has been
developed. The method utilizes scale estimation to itera-
tively select an appropriate template width, as a function
of the dispersion of edge points from the circular bound-
ary. The range of signal to noise ratio’s with which the
algorithm can cope is considerably greater than that of
the standard least-squares with outlier rejection. The
performance of the robust estimator degrades gracefully
as the noise level increases. Experimental results using



both synthetic and real data illustrate the robustness of

the method.
------------- Mean
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bust, though inaccurate initial stage, such as the HT, Tukey Bi—weight

provide a useful approach to parameter estimation prob-

lems. These methods have wide application to problems i0.0
in computer vision and image analysis. -
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(a) Least Squares : Template = 16 (b) Robust Estimator
Using accurate initial estimate Using accurate initial estimate

(c) Least Squares : Template = 16 (d) Robust Estimator
Using inaccurate initial estimate Using inaccurate initial estimate

Figure 5: Comparison of Algorithms
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